n8rob commited on
Commit
8509526
1 Parent(s): 0ffe8b4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -74,7 +74,7 @@ And cite our work:
74
 
75
  ## Model hosted here
76
 
77
- This is a many-to-many model for Creole-English, English-Creole and Creole-Creole MT, fine-tuned on top of `facebook/mbart-large-50-many-to-many-mmt`, with only public data.
78
 
79
  Usage:
80
 
@@ -82,13 +82,13 @@ Usage:
82
  from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
83
  from transformers import MbartTokenizer, AutoTokenizer
84
 
85
- tokenizer = AutoTokenizer.from_pretrained("n8rob/kreyol-mt-pubtrain", do_lower_case=False, use_fast=False, keep_accents=True)
86
 
87
- # Or use tokenizer = MbartTokenizer.from_pretrained("n8rob/kreyol-mt-pubtrain", use_fast=False)
88
 
89
- model = AutoModelForSeq2SeqLM.from_pretrained("n8rob/kreyol-mt-pubtrain")
90
 
91
- # Or use model = MBartForConditionalGeneration.from_pretrained("n8rob/kreyol-mt-pubtrain")
92
 
93
  # First tokenize the input and outputs. The format below is how the model was trained so the input should be "Sentence </s> SRCCODE". Similarly, the output should be "TGTCODE Sentence </s>".
94
  # Example: For Saint Lucian Patois to English translation, we need to use language indicator tags: <2acf> and <2eng> where acf represents Saint Lucian Patois and eng represents English.
 
74
 
75
  ## Model hosted here
76
 
77
+ This is a many-to-many model for translation into and out of Creole languages, fine-tuned on top of `facebook/mbart-large-50-many-to-many-mmt`, with only public data.
78
 
79
  Usage:
80
 
 
82
  from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
83
  from transformers import MbartTokenizer, AutoTokenizer
84
 
85
+ tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/kreyol-mt-pubtrain", do_lower_case=False, use_fast=False, keep_accents=True)
86
 
87
+ # Or use tokenizer = MbartTokenizer.from_pretrained("jhu-clsp/kreyol-mt-pubtrain", use_fast=False)
88
 
89
+ model = AutoModelForSeq2SeqLM.from_pretrained("jhu-clsp/kreyol-mt-pubtrain")
90
 
91
+ # Or use model = MBartForConditionalGeneration.from_pretrained("jhu-clsp/kreyol-mt-pubtrain")
92
 
93
  # First tokenize the input and outputs. The format below is how the model was trained so the input should be "Sentence </s> SRCCODE". Similarly, the output should be "TGTCODE Sentence </s>".
94
  # Example: For Saint Lucian Patois to English translation, we need to use language indicator tags: <2acf> and <2eng> where acf represents Saint Lucian Patois and eng represents English.