junlong jia
commit from junlongjia
a0b5907
raw
history blame
4.61 kB
from transformers import PretrainedConfig
from transformers import CONFIG_MAPPING
from transformers import AutoConfig
from utils import *
class TinyLlavaConfig(PretrainedConfig):
model_type = "tinyllava"
def __init__(
self,
llm_model_name_or_path = '',
tokenizer_name_or_path = None,
vision_model_name_or_path = '',
vision_model_name_or_path2 = '',
connector_type = None,
text_config=None,
hidden_size=2048,
vocab_size=32000,
ignore_index=-100,
image_token_index=32000,
pad_token = None,
pad_token_id = None,
tokenizer_padding_side = 'right',
tokenizer_model_max_length = 2048,
vision_config = None,
vision_hidden_size = None,
vision_feature_layer = -2,
vision_feature_select_strategy = 'patch',
image_aspect_ratio = 'square',
resampler_hidden_size = None,
num_queries = None,
num_resampler_layers = None,
use_cache = False,
cache_dir = None,
tokenizer_use_fast = False,
tune_type_llm = 'frozen',
tune_type_connector = 'frozen',
tune_type_vision_tower = 'frozen',
tune_vision_tower_from_layer = -1,
**kwargs
):
self.llm_model_name_or_path = llm_model_name_or_path
self.tokenizer_name_or_path = tokenizer_name_or_path or self.llm_model_name_or_path
self.vision_model_name_or_path = vision_model_name_or_path
self.vision_model_name_or_path2 = vision_model_name_or_path2
self.connector_type = connector_type
self.tune_type_llm = tune_type_llm
self.tune_type_connector = tune_type_connector
self.tune_type_vision_tower = tune_type_vision_tower
self.tune_vision_tower_from_layer = tune_vision_tower_from_layer
self.ignore_index = IGNORE_INDEX
self.image_token_index = IMAGE_TOKEN_INDEX
self.pad_token = pad_token
self.pad_token_id = pad_token_id
self.tokenizer_padding_side = tokenizer_padding_side
self.tokenizer_model_max_length = tokenizer_model_max_length
self.vision_feature_layer = vision_feature_layer
self.vision_feature_select_strategy = vision_feature_select_strategy
self.image_aspect_ratio = image_aspect_ratio
self.resampler_hidden_size = resampler_hidden_size
self.num_queries = num_queries
self.num_resampler_layers = num_resampler_layers
self.use_cache = use_cache
self.cache_dir = cache_dir
self.tokenizer_use_fast = tokenizer_use_fast
self._load_text_config(text_config)
self._load_vision_config(vision_config)
super().__init__(**kwargs)
def _load_text_config(self, text_config=None):
if self.llm_model_name_or_path is None or self.llm_model_name_or_path == '':
self.text_config = CONFIG_MAPPING['llama']()
else:
self.text_config = AutoConfig.from_pretrained(self.llm_model_name_or_path, trust_remote_code=True)
if text_config is not None:
self.text_config = self.text_config.from_dict(text_config)
self.hidden_size = getattr(self.text_config, 'hidden_size', getattr(self.text_config, 'model_dim', None))
self.vocab_size = getattr(self.text_config, 'vocab_size', None)
def _load_vision_config(self, vision_config=None):
if self.vision_model_name_or_path is None or self.vision_model_name_or_path == '':
self.vision_config = CONFIG_MAPPING['clip_vision_model'](
intermediate_size=4096,
hidden_size=1024,
patch_size=14,
image_size=336,
num_hidden_layers=24,
num_attention_heads=16,
vocab_size=32000,
projection_dim=768,
)
else:
self.vision_config = AutoConfig.from_pretrained(self.vision_model_name_or_path.split(':')[-1])
self.vision_config = getattr(self.vision_config, 'vision_config', self.vision_config)
if vision_config is not None:
self.vision_config = self.vision_config.from_dict(vision_config)
self.vision_config.model_name_or_path = self.vision_model_name_or_path.split(':')[-1]
self.vision_config.model_name_or_path2 = self.vision_model_name_or_path2.split(':')[-1]
self.vision_hidden_size = getattr(self.vision_config, 'hidden_size', None)