File size: 1,714 Bytes
7716aca
 
9d74d8a
7716aca
 
 
 
 
 
 
 
 
 
 
 
9d74d8a
 
 
 
7716aca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
facb390
 
7716aca
 
9d74d8a
 
7716aca
 
9d74d8a
 
facb390
7716aca
 
 
9d74d8a
 
 
 
 
 
7716aca
 
 
 
 
facb390
7716aca
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: apache-2.0
base_model: ctl/wav2vec2-large-xlsr-cantonese
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-large-xls-r-300m-zhhk
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-zhhk

This model is a fine-tuned version of [ctl/wav2vec2-large-xlsr-cantonese](https://huggingface.co/ctl/wav2vec2-large-xlsr-cantonese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 4.3414
- Cer: 0.7094

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 9.2737        | 6.78  | 400  | 4.0199          | 0.8241 |
| 1.0554        | 13.56 | 800  | 4.2189          | 0.7531 |
| 0.5784        | 20.34 | 1200 | 4.3916          | 0.7212 |
| 0.3313        | 27.12 | 1600 | 4.3414          | 0.7094 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0