{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b59f8c67500>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 100352, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695708780027749470, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADDvZD8uH8+8ckHaunPzB7lcA+497Wr9OQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFDpMKTjebeMAWyUTegDjAF0lEdAd7dKW9lEqnV9lChoBkfAUazuhK15SmgHTc0BaAhHQHfGp7b+Lm91fZQoaAZHQGAJm4RVZLZoB03oA2gIR0B35skrwvxpdX2UKGgGR0BRLIPK+zt1aAdN6ANoCEdAeA5w9aEBbXV9lChoBkdASfG4/eLvTmgHTegDaAhHQHg2Gt6ol2N1fZQoaAZHwGHQ9h7Vrh1oB00CAmgIR0B4Qg5cTrVwdX2UKGgGR0BYOEGu9vjwaAdN6ANoCEdAeF3cdYGMXXV9lChoBkfAWY40Mw1zhmgHTYwBaAhHQHhnGk30f5l1fZQoaAZHwEg6y0rsjVxoB03bAWgIR0B4dyrU9ZA6dX2UKGgGR8BIQ+pGWldkaAdNHwJoCEdAeIPRcNYr8XV9lChoBkfANJ1mJ3xFzGgHTTgCaAhHQHiVxPfsNUh1fZQoaAZHQDm1LoOhCdBoB03oA2gIR0B4spFuvUz9dX2UKGgGR8BYRC6H0se5aAdN5AFoCEdAeL3piZv1lHV9lChoBkdAWUpEb5uZTmgHTegDaAhHQHjdoiLVFx51fZQoaAZHwGDIPDHfdh1oB006AmgIR0B49oxqO939dX2UKGgGR0BXWC9ytFKDaAdN6ANoCEdAeSDBLf1pTXV9lChoBkdAW3WBun/DL2gHTegDaAhHQHk+lcD8tPJ1fZQoaAZHQFHuGDL8rI5oB03oA2gIR0B5Wrkhib2EdX2UKGgGR8A1f9RaX8fnaAdN6ANoCEdAeXcaisXBQHV9lChoBkfAR8VMj/uLJmgHTZwBaAhHQHmA95yEL6V1fZQoaAZHwESbaHsTnJVoB01tAmgIR0B5lAdq+JxedX2UKGgGR0Ayme9zwMH9aAdN6ANoCEdAebC4+bExZnV9lChoBkfAUEojNY8uBmgHTXQCaAhHQHm/u3lS0jV1fZQoaAZHQEq91qWTouBoB03oA2gIR0B54x+TeO4odX2UKGgGR8BUxMWbgCOnaAdN6AJoCEdAegQMURFqjHV9lChoBkdAU9I4m1IAfmgHTegDaAhHQHonNPP9kz51fZQoaAZHQF7m6T4cm0FoB03oA2gIR0B6Q2fh/Aj6dX2UKGgGR0BTup9/jKgaaAdN6ANoCEdAel+BBAv+O3V9lChoBkdAUydS619fC2gHTegDaAhHQHp7NbkfcN91fZQoaAZHwE51JT2nKnxoB03PAWgIR0B6he7e2uxKdX2UKGgGR0A2gJY1YQrdaAdN6ANoCEdAeqHfgJkXlHV9lChoBkdAJjkhq0tyxWgHTegDaAhHQHq/vo7muDB1fZQoaAZHQGPfXtjTa0xoB03oA2gIR0B65oj8k2P1dX2UKGgGR0Bi2c6FM7EHaAdN6ANoCEdAexECUHIIW3V9lChoBkdAY6lmapgkT2gHTegDaAhHQHstpmqYJE91fZQoaAZHQEQM5xzaK1poB0vaaAhHQHs3RnWattB1fZQoaAZHQGCLflp48lpoB03oA2gIR0B7U8nhKlHjdX2UKGgGR0BZ+GmxdIGyaAdN6ANoCEdAe3BBBiTdL3V9lChoBkfASIgAjps41mgHTToBaAhHQHt3jK1XvH91fZQoaAZHQFIZZV4oqkNoB03oA2gIR0B7lBysCDEndX2UKGgGR0Bic9UlzEJjaAdN6ANoCEdAe7CPXTVlPXV9lChoBkdAWMm3VkMCtGgHTegDaAhHQHvW20iQkop1fZQoaAZHQFiU4mkWRA9oB03oA2gIR0B8AVkFwDNhdX2UKGgGR0BWTvcWTHKfaAdN6ANoCEdAfCAfwZwXInV9lChoBkdAWjZG7SRbKWgHTegDaAhHQHw897F85S51fZQoaAZHwEE6+s5n14BoB00KAWgIR0B8Q3aXa8HwdX2UKGgGR0BeYzMibDuSaAdN6ANoCEdAfF+nEl3QlnV9lChoBkdAVLrub7TDwmgHTegDaAhHQHx7lqagElp1fZQoaAZHQFvHt+TeO4poB03oA2gIR0B8mDKJVKf4dX2UKGgGR0BfKYAbQ1JlaAdN6ANoCEdAfLi61LJ0XHV9lChoBkdAXjmmEXcgyWgHTegDaAhHQHzg6BRQ7911fZQoaAZHQCtjkp7TlT5oB01OAWgIR0B87J2hZha1dX2UKGgGR0Bbf02pAD7qaAdN6ANoCEdAfQ8g88s+V3V9lChoBkfASXfai9IwumgHTREBaAhHQH0Vk+X7cfx1fZQoaAZHQGFeULDye7NoB03oA2gIR0B9Mg/OdGy5dX2UKGgGR0BjBPCXQdCFaAdN6ANoCEdAfU4N0NjLCHV9lChoBkdAX5GZYxL0z2gHTegDaAhHQH1qrlFMIu51fZQoaAZHQGNR5BcAzYVoB03oA2gIR0B9hzY5DJEIdX2UKGgGR0BUDG8Zk079aAdN6ANoCEdAfaUxYaHbh3V9lChoBkdAXe3i5uqFRGgHTegDaAhHQH3MvTLGJep1fZQoaAZHQGVQBf0Eov1oB000AmgIR0B9511wHZ9NdX2UKGgGR0AnpwKjSG8FaAdNmAFoCEdAffWeYD1XeXV9lChoBkdAV8TvJA+pwWgHTegDaAhHQH4SbT6SDAd1fZQoaAZHQE2MqaPS2IBoB03oA2gIR0B+Lrck+otMdX2UKGgGR0BTgCBbwBo3aAdN6ANoCEdAfkqZCfHxSnV9lChoBkdAUFZpdrwfAGgHTegDaAhHQH5m+5OJtSB1fZQoaAZHQFlBfGdZq21oB03oA2gIR0B+g4XAM2FWdX2UKGgGR0AncH31zySWaAdNeQFoCEdAfoxFkxyn1nV9lChoBkdAYfOM9bHIZWgHTegDaAhHQH6vSPQv6CV1fZQoaAZHQCQZiZv1lGxoB00jAWgIR0B+v+DJ2dNGdX2UKGgGR0BWEVvQ4S6EaAdN6ANoCEdAfurGAkLQX3V9lChoBkfASIeearmyPmgHTdABaAhHQH71wqmTC+F1fZQoaAZHQFin6Kcd5ptoB03oA2gIR0B/Ega3qiXZdX2UKGgGR8BXf3XNC7btaAdN8wFoCEdAfyKH93r2QHV9lChoBkdAVYk+7lJYkmgHTegDaAhHQH8+ykKu0Tl1fZQoaAZHQFMuJWvKU3ZoB03oA2gIR0B/W3PHDJlrdX2UKGgGR0Be864pc5bRaAdN6ANoCEdAf3mGkN4JNXV9lChoBkdAHczfaYeDF2gHTWYBaAhHQH+DHirDIil1fZQoaAZHwFiULQXyiEhoB02PAWgIR0B/jN3Qla8pdX2UKGgGR0BWJ9KmKqGUaAdN6ANoCEdAf7NJZntfHHV9lChoBkdAWPAa3qiXY2gHTegDaAhHQH/eQzYVZcN1fZQoaAZHQFcbiliz9jxoB03oA2gIR0B/+6hK15SndX2UKGgGR0BifP420iQlaAdN6ANoCEdAgAv9deIEbHV9lChoBkfAGO8w5/9YOmgHTZcBaAhHQIAS/ub7TDx1fZQoaAZHQEGNJHRTjvNoB03oA2gIR0CAIURGMGX5dX2UKGgGR0BbEWGmDUVjaAdN6ANoCEdAgC+QOFxn4HV9lChoBkdAWrWPT5O8CmgHTegDaAhHQIA9vAAQxvh1fZQoaAZHQFTqVKPGQ0ZoB03oA2gIR0CAT+DnvDxcdX2UKGgGR8BLNCfQKKHgaAdNqQFoCEdAgFc1vuPV/nV9lChoBkfAV9KslsxfwGgHTakBaAhHQIBeh+x4Y791fZQoaAZHwFLJD0163RZoB00aAmgIR0CAa4KbayrxdX2UKGgGR8BeKGDUVi4KaAdNdQJoCEdAgHMr8rI5pHV9lChoBkfAW0nKs+3YtmgHTQ4CaAhHQIB7zb349HN1fZQoaAZHQGM1sTN+so5oB01aAmgIR0CAhSosqaw2dX2UKGgGR0BZ9QLux8lYaAdN6ANoCEdAgJMgVfu1GHV9lChoBkfAWxWOq//Nq2gHTfIBaAhHQICY6wY+B6N1fZQoaAZHQEv468xsVL1oB03oA2gIR0CApy8oQWepdX2UKGgGR8BM6yDyvs7daAdNBQJoCEdAgK+uD8LronV9lChoBkfAUzOinHeaa2gHTW8BaAhHQICz9MCcPOJ1fZQoaAZHQE9EbVBlcyFoB03oA2gIR0CAxLuTA31jdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 784, "observation_space": {":type:": "", ":serialized:": "gAWVGQMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoOooRPLYzfrSK7TO1ZamZUFEnigCMA2luY5SKEJcJzUJ7im2NrtN86HPxrxl1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "", ":serialized:": "gAWVgQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oROOS0/cmQgKKtx4NxgSPzsACMA2luY5SKEANp7Tpg7f+zJBD8rXVZTGZ1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpRKcsOINHVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}