update
Browse files- README.md +89 -0
- config.json +27 -0
- configuration_vitamin.py +158 -0
- model.py +741 -0
- preprocessor_config.json +20 -0
- timm_model.py +151 -0
- vitamin.py +795 -0
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# [ViTamin: Design Scalable Vision Models in the Vision-language Era](https://arxiv.org/pdf/2404.02132.pdf)
|
2 |
+
Official huggingface models of **ViTamin**, from the following paper:
|
3 |
+
|
4 |
+
[ViTamin: Design Scalable Vision Models in the Vision-language Era](https://arxiv.org/pdf/2404.02132.pdf).\
|
5 |
+
✨  [Jieneng Chen](https://beckschen.github.io), [Qihang Yu](https://yucornetto.github.io/), [Xiaohui Shen](https://xiaohuishen.github.io/), [Alan Yuille](https://www.cs.jhu.edu/~ayuille/) and [Liang-Chieh Chen](http://liangchiehchen.com/)\
|
6 |
+
🏠  Johns Hopkins University, Bytedance
|
7 |
+
|
8 |
+
|
9 |
+
Load from HuggingFace:
|
10 |
+
```python
|
11 |
+
import torch
|
12 |
+
import open_clip
|
13 |
+
from PIL import Image
|
14 |
+
from transformers import AutoModel, CLIPImageProcessor
|
15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
|
17 |
+
model = AutoModel.from_pretrained(
|
18 |
+
'jienengchen/ViTamin-XL-384px',
|
19 |
+
trust_remote_code=True).to(device).eval()
|
20 |
+
|
21 |
+
image = Image.open('./image.png').convert('RGB')
|
22 |
+
image_processor = CLIPImageProcessor.from_pretrained('jienengchen/ViTamin-XL-384px')
|
23 |
+
|
24 |
+
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
|
25 |
+
pixel_values = pixel_values.to(torch.bfloat16).cuda()
|
26 |
+
|
27 |
+
tokenizer = open_clip.get_tokenizer('hf-hub:laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K')
|
28 |
+
text = tokenizer(["a photo of vitamin", "a dog", "a cat"]).to(device)
|
29 |
+
|
30 |
+
with torch.no_grad(), torch.cuda.amp.autocast():
|
31 |
+
image_features, text_features, logit_scale = model(pixel_values, text)
|
32 |
+
text_probs = (100.0 * image_features @ text_features.to(torch.float).T).softmax(dim=-1)
|
33 |
+
|
34 |
+
print("Label probs:", text_probs)
|
35 |
+
```
|
36 |
+
|
37 |
+
## Main Results with CLIP Pre-training on DataComp-1B
|
38 |
+
|
39 |
+
|
40 |
+
| image encoder | image size | num patches | text encoder depth/width | seen samples (B) | trainable params Image+Text (M) | MACs Image+Text (G) | ImageNet Acc. | avg. 38 datasets | ImageNet dist. shift. | VTAB | retrieval |
|
41 |
+
|---------------|------------|-------------|--------------------------|-------------------|---------------------------------|----------------------|---------------|------------------|-----------------------|------|-----------|
|
42 |
+
| ViTamin-L | 224 | 196 | 12/768 | 12.8 | 333.3+123.7 | 72.6+6.6 | 80.8 | 66.7 | 69.8 | 65.3 | 60.3 |
|
43 |
+
| ViTamin-L | 256 | 256 | 12/768 | 12.8+0.2 | 333.4+123.7 | 94.8+6.6 | 81.2 | 67.0 | 71.1 | 65.3 | 61.2 |
|
44 |
+
| ViTamin-L | 336 | 441 | 12/768 | 12.8+0.2 | 333.6+123.7 | 163.4+6.6 | 81.6 | 67.0 | 72.1 | 64.4 | 61.6 |
|
45 |
+
| ViTamin-L | 384 | 576 | 12/768 | 12.8+0.2 | 333.7+123.7 | 213.4+6.6 | 81.8 | 67.2 | 72.4 | 64.7 | 61.8 |
|
46 |
+
| ViTamin-L2 | 224 | 196 | 24/1024 | 12.8 | 333.6+354.0 | 72.6+23.3 | 80.9 | 66.4 | 70.6 | 63.4 | 61.5 |
|
47 |
+
| ViTamin-L2 | 256 | 256 | 24/1024 | 12.8+0.5 | 333.6+354.0 | 94.8+23.3 | 81.5 | 67.4 | 71.9 | 64.1 | 63.1 |
|
48 |
+
| ViTamin-L2 | 336 | 441 | 24/1024 | 12.8+0.5 | 333.8+354.0 | 163.4+23.3 | 81.8 | 67.8 | 73.0 | 64.5 | 63.6 |
|
49 |
+
| ViTamin-L2 | 384 | 576 | 24/1024 | 12.8+0.5 | 334.0+354.0 | 213.4+23.3 | 82.1 | 68.1 | 73.4 | 64.8 | 63.7 |
|
50 |
+
| ViTamin-XL | 256 | 256 | 27/1152 | 12.8+0.5 | 436.1+488.7 | 125.3+33.1 | 82.1 | 67.6 | 72.3 | 65.4 | 62.7 |
|
51 |
+
| ViTamin-XL | 384 | 576 | 27/1152 | 12.8+0.5 | 436.1+488.7 | 281.9+33.1 | 82.6 | 68.1 | 73.6 | 65.6 | 63.8 |
|
52 |
+
| ViTamin-XL | 256 | 256 | 27/1152 | 40 | 436.1+488.7 | 125.3+33.1 | 82.3 | 67.5 | 72.8 | 64.0 | 62.1 |
|
53 |
+
| ViTamin-XL | 336 | 441 | 27/1152 | 40+1 | 436.1+488.7 | 215.9+33.1 | 82.7 | 68.0 | 73.9 | 64.1 | 62.6 |
|
54 |
+
| ViTamin-XL | 384 | 576 | 27/1152 | 40+1 | 436.1+488.7 | 281.9+33.1 | 82.9 | 68.1 | 74.1 | 64.0 | 62.5 |
|
55 |
+
|
56 |
+
## Main Results on Downstream tasks
|
57 |
+
**Open-Vocab Detection**
|
58 |
+
| image encoder | detector | OV-COCO (AP<sub>50</sub><sup>novel</sup>) | OV-LVIS (AP<sub>r</sub>) |
|
59 |
+
|---------------|----------|---------------------------------------|-----------------------|
|
60 |
+
| ViT-L/14 | Sliding F-ViT | 36.1 | 32.5 |
|
61 |
+
| ViTamin-L | Sliding F-ViT | 37.5 | 35.6 |
|
62 |
+
|
63 |
+
**Open-Vocab Segmentation**
|
64 |
+
|
65 |
+
| image encoder | segmentor | ADE | Cityscapes | MV | A-150 | A-847 | PC-459 | PC-59 | PAS-21 |
|
66 |
+
|---------------|-------------|----------------|--------------|------|-------|-------|--------|-------|--------------------|
|
67 |
+
| ViT-L/14 | Sliding FC-CLIP | 24.6 | 40.7 | 16.5 | 31.8 | 14.3 | 18.3 | 55.1 | 81.5 |
|
68 |
+
| ViTamin-L | Sliding FC-CLIP | 27.3 | 44.0 | 18.2 | 35.6 | 16.1 | 20.4 | 58.4 | 83.4 |
|
69 |
+
|
70 |
+
Note: Panoptic dataset (ADE, CityScapes, MV) are with the metric of PQ. Semantic dataset (A-150, A-847, PC-459, PC-59, PAS-21) are with the metric of mIoU.
|
71 |
+
|
72 |
+
**Large Multi-modal Models**
|
73 |
+
|
74 |
+
| image encoder | image size | VQAv2 | GQA | VizWiz | SQA | T-VQA | POPE | MME | MM-Bench | MM-B-CN | SEED | LLaVA-Wild | MM-Vet |
|
75 |
+
|---------------|----------|-------|------|--------|------|-------|------|------|----------|---------|------|------------|--------|
|
76 |
+
| ViTamin-L | 224 | 78.4 | 61.6 | 51.1 | 66.9 | 58.7 | 84.6 | 1421 | 65.4 | 58.4 | 57.7 | 64.5 | 33.6 |
|
77 |
+
| ViTamin-L | 384 | 78.9 | 61.6 | 55.4 | 67.6 | 59.8 | 85.5 | 1447 | 64.5 | 58.3 | 57.9 | 66.1 | 33.6 |
|
78 |
+
|
79 |
+
|
80 |
+
## Citing ViTamin
|
81 |
+
|
82 |
+
```
|
83 |
+
@inproceedings{chen2024vitamin,
|
84 |
+
title={ViTamin: Design Scalable Vision Models in the Vision-language Era},
|
85 |
+
author={Chen, Jieneng and Yu, Qihang and Shen, Xiaohui and Yuille, ALan and Chen, Liang-Chieh},
|
86 |
+
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
|
87 |
+
year={2024}
|
88 |
+
}
|
89 |
+
```
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_commit_hash": null,
|
3 |
+
"architectures": [
|
4 |
+
"ViTaminCLIP"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_vitamin.ViTaminConfig",
|
8 |
+
"AutoModel": "model.ViTaminCLIP"
|
9 |
+
},
|
10 |
+
"embed_dim": 768,
|
11 |
+
"vision_cfg": {
|
12 |
+
"timm_model_name": "vitamin_large_336",
|
13 |
+
"timm_model_pretrained": false,
|
14 |
+
"timm_pool": "",
|
15 |
+
"timm_proj": "linear",
|
16 |
+
"timm_drop": 0.0,
|
17 |
+
"timm_drop_path": 0.1,
|
18 |
+
"image_size": 336
|
19 |
+
},
|
20 |
+
"text_cfg": {
|
21 |
+
"context_length": 77,
|
22 |
+
"vocab_size": 49408,
|
23 |
+
"width": 768,
|
24 |
+
"heads": 12,
|
25 |
+
"layers": 12
|
26 |
+
}
|
27 |
+
}
|
configuration_vitamin.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" ViTamin
|
2 |
+
|
3 |
+
Paper: Designing Scalable Vison Models in the Vision-Language Era
|
4 |
+
|
5 |
+
@misc{chen2023designing,
|
6 |
+
title={Designing Scalable Vison Models in the Vision-Language Era},
|
7 |
+
author={Jieneng Chen and Qihang Yu and Xiaohui Shen and Alan Yuille and Liang-Cheih Chen},
|
8 |
+
year={2023},
|
9 |
+
archivePrefix={arXiv},
|
10 |
+
primaryClass={cs.CV}
|
11 |
+
}
|
12 |
+
|
13 |
+
Based on Apache 2.0 licensed code at https://github.com/Beckschen/ViTamin
|
14 |
+
|
15 |
+
by Jieneng Chen 2024
|
16 |
+
"""
|
17 |
+
|
18 |
+
import copy
|
19 |
+
import os
|
20 |
+
from collections import OrderedDict
|
21 |
+
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
|
22 |
+
|
23 |
+
|
24 |
+
if TYPE_CHECKING:
|
25 |
+
from transformers.processing_utils import ProcessorMixin
|
26 |
+
from transformers.utils import TensorType
|
27 |
+
|
28 |
+
from transformers.configuration_utils import PretrainedConfig
|
29 |
+
from transformers.utils import logging
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__)
|
32 |
+
|
33 |
+
class ViTaminTextConfig(PretrainedConfig):
|
34 |
+
model_type = "vitamin_text_model"
|
35 |
+
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
context_length = 77,
|
39 |
+
vocab_size = 49408,
|
40 |
+
width = 1024,
|
41 |
+
heads = 16,
|
42 |
+
layers = 24,
|
43 |
+
**kwargs,
|
44 |
+
):
|
45 |
+
super().__init__(**kwargs)
|
46 |
+
|
47 |
+
self.vocab_size = vocab_size
|
48 |
+
self.context_length = context_length
|
49 |
+
self.width = width
|
50 |
+
self.heads = heads
|
51 |
+
self.layers = layers
|
52 |
+
|
53 |
+
@classmethod
|
54 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
55 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
56 |
+
|
57 |
+
if 'text_config' in config_dict:
|
58 |
+
config_dict = config_dict['text_config']
|
59 |
+
|
60 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
61 |
+
logger.warning(
|
62 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
63 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
64 |
+
)
|
65 |
+
|
66 |
+
return cls.from_dict(config_dict, **kwargs)
|
67 |
+
|
68 |
+
|
69 |
+
class ViTaminVisionConfig(PretrainedConfig):
|
70 |
+
|
71 |
+
model_type = "vitamin_vision_model"
|
72 |
+
|
73 |
+
def __init__(
|
74 |
+
self,
|
75 |
+
timm_model_name = "vitamin_large",
|
76 |
+
timm_model_pretrained = False,
|
77 |
+
timm_pool = "",
|
78 |
+
timm_proj = "linear",
|
79 |
+
timm_drop = 0.0,
|
80 |
+
timm_drop_path = 0.1,
|
81 |
+
image_size = 256,
|
82 |
+
timm_proj_bias = False,
|
83 |
+
patch_dropout = 0.0,
|
84 |
+
drop_path = None,
|
85 |
+
**kwargs,
|
86 |
+
):
|
87 |
+
super().__init__(**kwargs)
|
88 |
+
|
89 |
+
self.timm_model_name = timm_model_name
|
90 |
+
self.timm_model_pretrained = timm_model_pretrained
|
91 |
+
self.timm_pool = timm_pool
|
92 |
+
self.timm_proj = timm_proj
|
93 |
+
self.timm_drop = timm_drop
|
94 |
+
self.timm_drop_path = timm_drop_path
|
95 |
+
self.timm_proj_bias = timm_proj_bias
|
96 |
+
self.patch_dropout = patch_dropout
|
97 |
+
self.image_size = image_size
|
98 |
+
|
99 |
+
|
100 |
+
@classmethod
|
101 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
102 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
103 |
+
|
104 |
+
if 'vision_config' in config_dict:
|
105 |
+
config_dict = config_dict['vision_config']
|
106 |
+
|
107 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
108 |
+
logger.warning(
|
109 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
110 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
111 |
+
)
|
112 |
+
|
113 |
+
return cls.from_dict(config_dict, **kwargs)
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
class ViTaminConfig(PretrainedConfig):
|
118 |
+
model_type = "vitamin"
|
119 |
+
is_composition = True
|
120 |
+
|
121 |
+
def __init__(
|
122 |
+
self, text_config=None, vision_config=None, embed_dim=512, **kwargs
|
123 |
+
):
|
124 |
+
super().__init__(**kwargs)
|
125 |
+
if text_config is None:
|
126 |
+
text_config = {}
|
127 |
+
logger.info("`text_config` is `None`. Initializing the `CLIPTextConfig` with default values.")
|
128 |
+
|
129 |
+
if vision_config is None:
|
130 |
+
vision_config = {}
|
131 |
+
logger.info("`vision_config` is `None`. initializing the `CLIPVisionConfig` with default values.")
|
132 |
+
|
133 |
+
self.embed_dim = embed_dim
|
134 |
+
self.text_config = ViTaminTextConfig(**text_config)
|
135 |
+
self.vision_config = ViTaminVisionConfig(**vision_config)
|
136 |
+
|
137 |
+
@classmethod
|
138 |
+
def from_text_vision_configs(cls, text_config: ViTaminTextConfig, vision_config: ViTaminVisionConfig, **kwargs):
|
139 |
+
r"""
|
140 |
+
Instantiate a [`CLIPConfig`] (or a derived class) from clip text model configuration and clip vision model
|
141 |
+
configuration.
|
142 |
+
Returns:
|
143 |
+
[`CLIPConfig`]: An instance of a configuration object
|
144 |
+
"""
|
145 |
+
|
146 |
+
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
147 |
+
|
148 |
+
def to_dict(self):
|
149 |
+
"""
|
150 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
151 |
+
Returns:
|
152 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
153 |
+
"""
|
154 |
+
output = copy.deepcopy(self.__dict__)
|
155 |
+
output["text_config"] = self.text_config.to_dict()
|
156 |
+
output["vision_config"] = self.vision_config.to_dict()
|
157 |
+
output["model_type"] = self.__class__.model_type
|
158 |
+
return output
|
model.py
ADDED
@@ -0,0 +1,741 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" ViTamin
|
2 |
+
|
3 |
+
Paper: Designing Scalable Vison Models in the Vision-Language Era
|
4 |
+
|
5 |
+
@misc{chen2023designing,
|
6 |
+
title={Designing Scalable Vison Models in the Vision-Language Era},
|
7 |
+
author={Jieneng Chen and Qihang Yu and Xiaohui Shen and Alan Yuille and Liang-Cheih Chen},
|
8 |
+
year={2023},
|
9 |
+
archivePrefix={arXiv},
|
10 |
+
primaryClass={cs.CV}
|
11 |
+
}
|
12 |
+
|
13 |
+
Based on Apache 2.0 licensed code at https://github.com/Beckschen/ViTamin
|
14 |
+
|
15 |
+
by Jieneng Chen 2024
|
16 |
+
|
17 |
+
Reference: https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
18 |
+
"""
|
19 |
+
|
20 |
+
from dataclasses import dataclass
|
21 |
+
import logging
|
22 |
+
import math
|
23 |
+
from typing import Optional, Tuple, Union
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
import torch
|
27 |
+
import torch.nn.functional as F
|
28 |
+
from torch import nn
|
29 |
+
from torch.utils.checkpoint import checkpoint
|
30 |
+
from functools import partial
|
31 |
+
from open_clip.hf_model import HFTextEncoder
|
32 |
+
from open_clip.modified_resnet import ModifiedResNet
|
33 |
+
from open_clip.transformer import LayerNormFp32, LayerNorm, QuickGELU, Attention, VisionTransformer, TextTransformer
|
34 |
+
from open_clip.utils import to_2tuple
|
35 |
+
import time
|
36 |
+
import timm
|
37 |
+
from timm.models.vision_transformer import _create_vision_transformer
|
38 |
+
from .timm_model import TimmModel
|
39 |
+
from .vitamin import *
|
40 |
+
# from .vitamin import HybridEmbed, MbConvStages, VitCfg, VitConvCfg
|
41 |
+
from .vitamin import GeGluMlp, ViTamin, HybridEmbed, MbConvStages, VitCfg, VitConvCfg
|
42 |
+
from transformers.modeling_utils import PreTrainedModel
|
43 |
+
from .configuration_vitamin import ViTaminConfig, ViTaminVisionConfig
|
44 |
+
|
45 |
+
@dataclass
|
46 |
+
class CLIPVisionCfg:
|
47 |
+
layers: Union[Tuple[int, int, int, int], int] = 12
|
48 |
+
width: int = 768
|
49 |
+
head_width: int = 64
|
50 |
+
mlp_ratio: float = 4.0
|
51 |
+
patch_size: int = 16
|
52 |
+
image_size: Union[Tuple[int, int], int] = 224
|
53 |
+
|
54 |
+
ls_init_value: Optional[float] = None
|
55 |
+
patch_dropout: float = 0.
|
56 |
+
input_patchnorm: bool = False
|
57 |
+
global_average_pool: bool = False
|
58 |
+
attentional_pool: bool = False
|
59 |
+
n_queries: int = 256
|
60 |
+
attn_pooler_heads: int = 8
|
61 |
+
output_tokens: bool = False
|
62 |
+
|
63 |
+
timm_model_name: str = None
|
64 |
+
timm_model_pretrained: bool = False
|
65 |
+
timm_pool: str = 'avg'
|
66 |
+
timm_proj: str = 'linear'
|
67 |
+
timm_proj_bias: bool = False
|
68 |
+
timm_drop: float = 0.
|
69 |
+
timm_drop_path: Optional[float] = None
|
70 |
+
|
71 |
+
|
72 |
+
@dataclass
|
73 |
+
class CLIPTextCfg:
|
74 |
+
context_length: int = 77
|
75 |
+
vocab_size: int = 49408
|
76 |
+
width: int = 512
|
77 |
+
heads: int = 8
|
78 |
+
layers: int = 12
|
79 |
+
ls_init_value: Optional[float] = None # layer scale initial value
|
80 |
+
hf_model_name: str = None
|
81 |
+
hf_tokenizer_name: str = None
|
82 |
+
hf_model_pretrained: bool = True
|
83 |
+
proj: str = 'mlp'
|
84 |
+
pooler_type: str = 'mean_pooler'
|
85 |
+
embed_cls: bool = False
|
86 |
+
pad_id: int = 0
|
87 |
+
output_tokens: bool = False
|
88 |
+
text_mask: str = 'first' # default first truncate in bpe_tokenizer
|
89 |
+
|
90 |
+
|
91 |
+
def get_cast_dtype(precision: str):
|
92 |
+
cast_dtype = None
|
93 |
+
if precision == 'bf16':
|
94 |
+
cast_dtype = torch.bfloat16
|
95 |
+
elif precision == 'fp16':
|
96 |
+
cast_dtype = torch.float16
|
97 |
+
return cast_dtype
|
98 |
+
|
99 |
+
|
100 |
+
def get_input_dtype(precision: str):
|
101 |
+
input_dtype = None
|
102 |
+
if precision in ('bf16', 'pure_bf16'):
|
103 |
+
input_dtype = torch.bfloat16
|
104 |
+
elif precision in ('fp16', 'pure_fp16'):
|
105 |
+
input_dtype = torch.float16
|
106 |
+
return input_dtype
|
107 |
+
|
108 |
+
|
109 |
+
def _build_vision_tower(
|
110 |
+
embed_dim: int,
|
111 |
+
vision_cfg: CLIPVisionCfg,
|
112 |
+
quick_gelu: bool = False,
|
113 |
+
cast_dtype: Optional[torch.dtype] = None
|
114 |
+
):
|
115 |
+
if isinstance(vision_cfg, dict):
|
116 |
+
vision_cfg = CLIPVisionCfg(**vision_cfg)
|
117 |
+
|
118 |
+
act_layer = QuickGELU if quick_gelu else nn.GELU
|
119 |
+
|
120 |
+
if vision_cfg.timm_model_name:
|
121 |
+
visual = TimmModel(
|
122 |
+
vision_cfg.timm_model_name,
|
123 |
+
pretrained=vision_cfg.timm_model_pretrained,
|
124 |
+
pool=vision_cfg.timm_pool,
|
125 |
+
proj=vision_cfg.timm_proj,
|
126 |
+
proj_bias=vision_cfg.timm_proj_bias,
|
127 |
+
drop=vision_cfg.timm_drop,
|
128 |
+
drop_path=vision_cfg.timm_drop_path,
|
129 |
+
patch_drop=vision_cfg.patch_dropout if vision_cfg.patch_dropout > 0 else None,
|
130 |
+
embed_dim=embed_dim,
|
131 |
+
image_size=vision_cfg.image_size,
|
132 |
+
)
|
133 |
+
elif isinstance(vision_cfg.layers, (tuple, list)):
|
134 |
+
vision_heads = vision_cfg.width * 32 // vision_cfg.head_width
|
135 |
+
visual = ModifiedResNet(
|
136 |
+
layers=vision_cfg.layers,
|
137 |
+
output_dim=embed_dim,
|
138 |
+
heads=vision_heads,
|
139 |
+
image_size=vision_cfg.image_size,
|
140 |
+
width=vision_cfg.width,
|
141 |
+
)
|
142 |
+
else:
|
143 |
+
vision_heads = vision_cfg.width // vision_cfg.head_width
|
144 |
+
norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
|
145 |
+
visual = VisionTransformer(
|
146 |
+
image_size=vision_cfg.image_size,
|
147 |
+
patch_size=vision_cfg.patch_size,
|
148 |
+
width=vision_cfg.width,
|
149 |
+
layers=vision_cfg.layers,
|
150 |
+
heads=vision_heads,
|
151 |
+
mlp_ratio=vision_cfg.mlp_ratio,
|
152 |
+
ls_init_value=vision_cfg.ls_init_value,
|
153 |
+
patch_dropout=vision_cfg.patch_dropout,
|
154 |
+
input_patchnorm=vision_cfg.input_patchnorm,
|
155 |
+
global_average_pool=vision_cfg.global_average_pool,
|
156 |
+
attentional_pool=vision_cfg.attentional_pool,
|
157 |
+
n_queries=vision_cfg.n_queries,
|
158 |
+
attn_pooler_heads=vision_cfg.attn_pooler_heads,
|
159 |
+
output_tokens=vision_cfg.output_tokens,
|
160 |
+
output_dim=embed_dim,
|
161 |
+
act_layer=act_layer,
|
162 |
+
norm_layer=norm_layer,
|
163 |
+
)
|
164 |
+
|
165 |
+
return visual
|
166 |
+
|
167 |
+
|
168 |
+
def _build_text_tower(
|
169 |
+
embed_dim: int,
|
170 |
+
text_cfg: CLIPTextCfg,
|
171 |
+
quick_gelu: bool = False,
|
172 |
+
cast_dtype: Optional[torch.dtype] = None,
|
173 |
+
):
|
174 |
+
if isinstance(text_cfg, dict):
|
175 |
+
text_cfg = CLIPTextCfg(**text_cfg)
|
176 |
+
|
177 |
+
if text_cfg.hf_model_name:
|
178 |
+
text = HFTextEncoder(
|
179 |
+
text_cfg.hf_model_name,
|
180 |
+
output_dim=embed_dim,
|
181 |
+
proj=text_cfg.proj,
|
182 |
+
pooler_type=text_cfg.pooler_type,
|
183 |
+
pretrained=text_cfg.hf_model_pretrained,
|
184 |
+
output_tokens=text_cfg.output_tokens,
|
185 |
+
)
|
186 |
+
else:
|
187 |
+
act_layer = QuickGELU if quick_gelu else nn.GELU
|
188 |
+
norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
|
189 |
+
|
190 |
+
text = TextTransformer(
|
191 |
+
context_length=text_cfg.context_length,
|
192 |
+
vocab_size=text_cfg.vocab_size,
|
193 |
+
width=text_cfg.width,
|
194 |
+
heads=text_cfg.heads,
|
195 |
+
layers=text_cfg.layers,
|
196 |
+
ls_init_value=text_cfg.ls_init_value,
|
197 |
+
output_dim=embed_dim,
|
198 |
+
embed_cls=text_cfg.embed_cls,
|
199 |
+
output_tokens=text_cfg.output_tokens,
|
200 |
+
pad_id=text_cfg.pad_id,
|
201 |
+
act_layer=act_layer,
|
202 |
+
norm_layer=norm_layer,
|
203 |
+
)
|
204 |
+
return text
|
205 |
+
|
206 |
+
|
207 |
+
class CLIP(nn.Module):
|
208 |
+
output_dict: torch.jit.Final[bool]
|
209 |
+
|
210 |
+
def __init__(
|
211 |
+
self,
|
212 |
+
embed_dim: int,
|
213 |
+
vision_cfg: CLIPVisionCfg,
|
214 |
+
text_cfg: CLIPTextCfg,
|
215 |
+
quick_gelu: bool = False,
|
216 |
+
cast_dtype: Optional[torch.dtype] = None,
|
217 |
+
output_dict: bool = False,
|
218 |
+
):
|
219 |
+
super().__init__()
|
220 |
+
self.output_dict = output_dict
|
221 |
+
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
|
222 |
+
|
223 |
+
text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
|
224 |
+
self.transformer = text.transformer
|
225 |
+
self.context_length = text.context_length
|
226 |
+
self.vocab_size = text.vocab_size
|
227 |
+
self.token_embedding = text.token_embedding
|
228 |
+
self.positional_embedding = text.positional_embedding
|
229 |
+
|
230 |
+
self.ln_final = text.ln_final
|
231 |
+
self.text_projection = text.text_projection
|
232 |
+
self.register_buffer('attn_mask', text.attn_mask, persistent=False)
|
233 |
+
|
234 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
235 |
+
|
236 |
+
self.method_lock_text_tower = text.lock
|
237 |
+
self.text_no_grad = False
|
238 |
+
|
239 |
+
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
|
240 |
+
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991
|
241 |
+
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
|
242 |
+
|
243 |
+
def lock_text_tower(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True, unlock_text_proj=False):
|
244 |
+
# added by jieneng
|
245 |
+
self.method_lock_text_tower(unlocked_layers, freeze_layer_norm)
|
246 |
+
self.text_no_grad = True
|
247 |
+
|
248 |
+
@torch.jit.ignore
|
249 |
+
def set_grad_checkpointing(self, enable=True, enable_text=True):
|
250 |
+
self.visual.set_grad_checkpointing(enable)
|
251 |
+
self.transformer.grad_checkpointing = enable_text
|
252 |
+
|
253 |
+
def encode_image(self, image, normalize: bool = False):
|
254 |
+
features = self.visual(image)
|
255 |
+
return F.normalize(features, dim=-1) if normalize else features
|
256 |
+
|
257 |
+
def encode_text(self, text, normalize: bool = False):
|
258 |
+
cast_dtype = self.transformer.get_cast_dtype()
|
259 |
+
|
260 |
+
x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
|
261 |
+
|
262 |
+
x = x + self.positional_embedding.to(cast_dtype)
|
263 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
264 |
+
x = self.transformer(x, attn_mask=self.attn_mask)
|
265 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
266 |
+
x = self.ln_final(x) # [batch_size, n_ctx, transformer.width]
|
267 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
268 |
+
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
269 |
+
return F.normalize(x, dim=-1) if normalize else x
|
270 |
+
|
271 |
+
def forward(
|
272 |
+
self,
|
273 |
+
image: Optional[torch.Tensor] = None,
|
274 |
+
text: Optional[torch.Tensor] = None,
|
275 |
+
):
|
276 |
+
# torch.cuda.synchronize()
|
277 |
+
image_features = self.encode_image(image, normalize=True) if image is not None else None
|
278 |
+
|
279 |
+
if self.text_no_grad:
|
280 |
+
with torch.no_grad():
|
281 |
+
text_features = self.encode_text(text, normalize=True).detach() if text is not None else None
|
282 |
+
else:
|
283 |
+
text_features = self.encode_text(text, normalize=True) if text is not None else None
|
284 |
+
|
285 |
+
|
286 |
+
if self.output_dict:
|
287 |
+
return {
|
288 |
+
"image_features": image_features,
|
289 |
+
"text_features": text_features,
|
290 |
+
"logit_scale": self.logit_scale.exp()
|
291 |
+
}
|
292 |
+
return image_features, text_features, self.logit_scale.exp()
|
293 |
+
|
294 |
+
|
295 |
+
# class CustomTextCLIP(nn.Module):
|
296 |
+
|
297 |
+
|
298 |
+
class CustomTextCLIP(nn.Module):
|
299 |
+
output_dict: torch.jit.Final[bool]
|
300 |
+
|
301 |
+
def __init__(
|
302 |
+
self,
|
303 |
+
embed_dim: int,
|
304 |
+
vision_cfg: CLIPVisionCfg,
|
305 |
+
text_cfg: CLIPTextCfg,
|
306 |
+
quick_gelu: bool = False,
|
307 |
+
cast_dtype: Optional[torch.dtype] = None,
|
308 |
+
output_dict: bool = False,
|
309 |
+
):
|
310 |
+
super().__init__()
|
311 |
+
self.output_dict = output_dict
|
312 |
+
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
|
313 |
+
self.text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
|
314 |
+
self.context_length = self.text.context_length
|
315 |
+
self.vocab_size = self.text.vocab_size
|
316 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
317 |
+
self.text_no_grad = False
|
318 |
+
|
319 |
+
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
|
320 |
+
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991
|
321 |
+
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
|
322 |
+
|
323 |
+
def lock_text_tower(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True, unlock_text_proj = False):
|
324 |
+
self.text.lock(unlocked_layers, freeze_layer_norm, unlock_text_proj)
|
325 |
+
self.text_no_grad = True
|
326 |
+
|
327 |
+
|
328 |
+
@torch.jit.ignore
|
329 |
+
def set_grad_checkpointing(self, enable=True, enable_text=True):
|
330 |
+
self.visual.set_grad_checkpointing(enable)
|
331 |
+
self.text.set_grad_checkpointing(enable_text)
|
332 |
+
|
333 |
+
|
334 |
+
def encode_image(self, image, normalize: bool = False):
|
335 |
+
features = self.visual(image)
|
336 |
+
return F.normalize(features, dim=-1) if normalize else features
|
337 |
+
|
338 |
+
def encode_text(self, text, normalize: bool = False):
|
339 |
+
features = self.text(text)
|
340 |
+
return F.normalize(features, dim=-1) if normalize else features
|
341 |
+
|
342 |
+
def forward(
|
343 |
+
self,
|
344 |
+
image: Optional[torch.Tensor] = None,
|
345 |
+
text: Optional[torch.Tensor] = None,
|
346 |
+
):
|
347 |
+
image_features = self.encode_image(image, normalize=True) if image is not None else None
|
348 |
+
# if self.text_no_grad:
|
349 |
+
# with torch.no_grad():
|
350 |
+
# text_features = self.encode_text(text, normalize=True).detach() if text is not None else None
|
351 |
+
# else:
|
352 |
+
text_features = self.encode_text(text, normalize=True) if text is not None else None
|
353 |
+
|
354 |
+
if self.output_dict:
|
355 |
+
return {
|
356 |
+
"image_features": image_features,
|
357 |
+
"text_features": text_features,
|
358 |
+
"logit_scale": self.logit_scale.exp()
|
359 |
+
}
|
360 |
+
return image_features, text_features, self.logit_scale.exp()
|
361 |
+
|
362 |
+
|
363 |
+
class ViTaminPreTrainedModel(PreTrainedModel):
|
364 |
+
"""
|
365 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
366 |
+
models.
|
367 |
+
"""
|
368 |
+
|
369 |
+
config_class = ViTaminConfig
|
370 |
+
base_model_prefix = 'vitamin'
|
371 |
+
|
372 |
+
|
373 |
+
# hack CLIPVisionModel for llava: https://github.com/huggingface/transformers/blob/9acce7de1cb8229304a467938ebb47727d60cdb2/src/transformers/models/clip/modeling_clip.py#L878
|
374 |
+
class ViTaminVisionModel(PreTrainedModel):
|
375 |
+
config_class = ViTaminVisionConfig
|
376 |
+
main_input_name = 'pixel_values'
|
377 |
+
|
378 |
+
def __init__(self, config: ViTaminVisionConfig):
|
379 |
+
super().__init__(config)
|
380 |
+
|
381 |
+
self.visual = _build_vision_tower(config.embed_dim, config)
|
382 |
+
|
383 |
+
def forward(
|
384 |
+
self,
|
385 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
386 |
+
select_layer = -2,
|
387 |
+
):
|
388 |
+
assert len(pixel_values.shape) == 4, f'wrong pixel_values size: {pixel_values.shape}'
|
389 |
+
x = self.visual.trunk.patch_embed.backbone.stem(pixel_values)
|
390 |
+
x = self.visual.trunk.patch_embed.backbone.stages[0](x)
|
391 |
+
x = self.visual.trunk.patch_embed.backbone.stages[1](x)
|
392 |
+
x = self.visual.trunk.patch_embed.backbone.pool(x)
|
393 |
+
x = self.visual.trunk.patch_embed.proj(x)
|
394 |
+
x = x.flatten(2).transpose(1, 2)
|
395 |
+
x = self.visual.trunk.patch_drop(x)
|
396 |
+
x = self.visual.trunk.norm_pre(x)
|
397 |
+
x = self.visual.trunk.blocks[:select_layer+1](x)
|
398 |
+
return x
|
399 |
+
|
400 |
+
|
401 |
+
class ViTaminCLIP(ViTaminPreTrainedModel):
|
402 |
+
output_dict: torch.jit.Final[bool]
|
403 |
+
config_class: ViTaminConfig
|
404 |
+
|
405 |
+
def __init__(
|
406 |
+
self,
|
407 |
+
config: ViTaminConfig
|
408 |
+
):
|
409 |
+
super().__init__(config)
|
410 |
+
|
411 |
+
embed_dim=config.embed_dim #: int,
|
412 |
+
vision_cfg=config.vision_cfg #: CLIPVisionCfg,
|
413 |
+
text_cfg=config.text_cfg #: CLIPTextCfg,
|
414 |
+
quick_gelu=False
|
415 |
+
cast_dtype=None
|
416 |
+
output_dict=False
|
417 |
+
|
418 |
+
self.config = config
|
419 |
+
self.output_dict = output_dict
|
420 |
+
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
|
421 |
+
self.text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
|
422 |
+
self.context_length = self.text.context_length
|
423 |
+
self.vocab_size = self.text.vocab_size
|
424 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
425 |
+
self.text_no_grad = False
|
426 |
+
|
427 |
+
def forward_visual4llava(
|
428 |
+
self,
|
429 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
430 |
+
select_layer = -2,
|
431 |
+
):
|
432 |
+
assert len(pixel_values.shape) == 4, f'wrong pixel_values size: {pixel_values.shape}'
|
433 |
+
x = self.visual.trunk.patch_embed.backbone.stem(pixel_values)
|
434 |
+
x = self.visual.trunk.patch_embed.backbone.stages[0](x)
|
435 |
+
x = self.visual.trunk.patch_embed.backbone.stages[1](x)
|
436 |
+
x = self.visual.trunk.patch_embed.backbone.pool(x)
|
437 |
+
x = self.visual.trunk.patch_embed.proj(x)
|
438 |
+
x = x.flatten(2).transpose(1, 2)
|
439 |
+
x = self.visual.trunk.patch_drop(x)
|
440 |
+
x = self.visual.trunk.norm_pre(x)
|
441 |
+
x = self.visual.trunk.blocks[:select_layer+1](x)
|
442 |
+
return x
|
443 |
+
|
444 |
+
def encode_image(self, image, normalize: bool = False):
|
445 |
+
features = self.visual(image)
|
446 |
+
return F.normalize(features, dim=-1) if normalize else features
|
447 |
+
|
448 |
+
def encode_text(self, text, normalize: bool = False):
|
449 |
+
features = self.text(text)
|
450 |
+
return F.normalize(features, dim=-1) if normalize else features
|
451 |
+
|
452 |
+
def forward_pixel(
|
453 |
+
self,
|
454 |
+
image: Optional[torch.Tensor] = None,
|
455 |
+
text: Optional[torch.Tensor] = None,
|
456 |
+
):
|
457 |
+
|
458 |
+
x = self.visual.trunk.patch_embed.backbone.stem(image)
|
459 |
+
x = self.visual.trunk.patch_embed.backbone.stages[0](x)
|
460 |
+
x = self.visual.trunk.patch_embed.backbone.stages[1](x)
|
461 |
+
x = self.visual.trunk.patch_embed.backbone.pool(x)
|
462 |
+
x = self.visual.trunk.patch_embed.proj(x)
|
463 |
+
x = x.flatten(2).transpose(1, 2)
|
464 |
+
x = self.visual.trunk.patch_drop(x)
|
465 |
+
x = self.visual.trunk.norm_pre(x)
|
466 |
+
x = self.visual.trunk.blocks(x)
|
467 |
+
x = self.visual.trunk.fc_norm(x)
|
468 |
+
x = self.visual.head.proj(x)
|
469 |
+
image_features = F.normalize(x, dim=-1)
|
470 |
+
text_features = self.encode_text(text, normalize=True) if text is not None else None
|
471 |
+
|
472 |
+
if self.output_dict:
|
473 |
+
return {
|
474 |
+
"image_features": image_features,
|
475 |
+
"text_features": text_features,
|
476 |
+
"logit_scale": self.logit_scale.exp()
|
477 |
+
}
|
478 |
+
return image_features, text_features, self.logit_scale.exp()
|
479 |
+
|
480 |
+
def forward(
|
481 |
+
self,
|
482 |
+
image: Optional[torch.Tensor] = None,
|
483 |
+
text: Optional[torch.Tensor] = None,
|
484 |
+
):
|
485 |
+
image_features = self.encode_image(image, normalize=True) if image is not None else None
|
486 |
+
# if self.text_no_grad:
|
487 |
+
# with torch.no_grad():
|
488 |
+
# text_features = self.encode_text(text, normalize=True).detach() if text is not None else None
|
489 |
+
# else:
|
490 |
+
text_features = self.encode_text(text, normalize=True) if text is not None else None
|
491 |
+
|
492 |
+
if self.output_dict:
|
493 |
+
return {
|
494 |
+
"image_features": image_features,
|
495 |
+
"text_features": text_features,
|
496 |
+
"logit_scale": self.logit_scale.exp()
|
497 |
+
}
|
498 |
+
return image_features, text_features, self.logit_scale.exp()
|
499 |
+
|
500 |
+
def convert_weights_to_lp(model: nn.Module, dtype=torch.float16):
|
501 |
+
"""Convert applicable model parameters to low-precision (bf16 or fp16)"""
|
502 |
+
|
503 |
+
def _convert_weights(l):
|
504 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
505 |
+
l.weight.data = l.weight.data.to(dtype)
|
506 |
+
if l.bias is not None:
|
507 |
+
l.bias.data = l.bias.data.to(dtype)
|
508 |
+
|
509 |
+
if isinstance(l, (nn.MultiheadAttention, Attention)):
|
510 |
+
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
511 |
+
tensor = getattr(l, attr)
|
512 |
+
if tensor is not None:
|
513 |
+
tensor.data = tensor.data.to(dtype)
|
514 |
+
|
515 |
+
if isinstance(l, (CLIP, TextTransformer)):
|
516 |
+
# convert text nn.Parameter projections
|
517 |
+
attr = getattr(l, "text_projection", None)
|
518 |
+
if attr is not None:
|
519 |
+
attr.data = attr.data.to(dtype)
|
520 |
+
|
521 |
+
if isinstance(l, VisionTransformer):
|
522 |
+
# convert vision nn.Parameter projections
|
523 |
+
attr = getattr(l, "proj", None)
|
524 |
+
if attr is not None:
|
525 |
+
attr.data = attr.data.to(dtype)
|
526 |
+
|
527 |
+
model.apply(_convert_weights)
|
528 |
+
|
529 |
+
|
530 |
+
convert_weights_to_fp16 = convert_weights_to_lp # backwards compat
|
531 |
+
|
532 |
+
|
533 |
+
# used to maintain checkpoint compatibility
|
534 |
+
def convert_to_custom_text_state_dict(state_dict: dict):
|
535 |
+
if 'text_projection' in state_dict:
|
536 |
+
# old format state_dict, move text tower -> .text
|
537 |
+
new_state_dict = {}
|
538 |
+
for k, v in state_dict.items():
|
539 |
+
if any(k.startswith(p) for p in (
|
540 |
+
'text_projection',
|
541 |
+
'positional_embedding',
|
542 |
+
'token_embedding',
|
543 |
+
'transformer',
|
544 |
+
'ln_final',
|
545 |
+
)):
|
546 |
+
k = 'text.' + k
|
547 |
+
new_state_dict[k] = v
|
548 |
+
return new_state_dict
|
549 |
+
return state_dict
|
550 |
+
|
551 |
+
|
552 |
+
def build_model_from_openai_state_dict(
|
553 |
+
state_dict: dict,
|
554 |
+
quick_gelu=True,
|
555 |
+
cast_dtype=torch.float16,
|
556 |
+
):
|
557 |
+
vit = "visual.proj" in state_dict
|
558 |
+
|
559 |
+
if vit:
|
560 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
561 |
+
vision_layers = len(
|
562 |
+
[k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
563 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
564 |
+
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
565 |
+
image_size = vision_patch_size * grid_size
|
566 |
+
else:
|
567 |
+
counts: list = [
|
568 |
+
len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
569 |
+
vision_layers = tuple(counts)
|
570 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
571 |
+
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
572 |
+
vision_patch_size = None
|
573 |
+
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
574 |
+
image_size = output_width * 32
|
575 |
+
|
576 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
577 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
578 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
579 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
580 |
+
transformer_heads = transformer_width // 64
|
581 |
+
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
|
582 |
+
|
583 |
+
vision_cfg = CLIPVisionCfg(
|
584 |
+
layers=vision_layers,
|
585 |
+
width=vision_width,
|
586 |
+
patch_size=vision_patch_size,
|
587 |
+
image_size=image_size,
|
588 |
+
)
|
589 |
+
text_cfg = CLIPTextCfg(
|
590 |
+
context_length=context_length,
|
591 |
+
vocab_size=vocab_size,
|
592 |
+
width=transformer_width,
|
593 |
+
heads=transformer_heads,
|
594 |
+
layers=transformer_layers,
|
595 |
+
)
|
596 |
+
model = CLIP(
|
597 |
+
embed_dim,
|
598 |
+
vision_cfg=vision_cfg,
|
599 |
+
text_cfg=text_cfg,
|
600 |
+
quick_gelu=quick_gelu, # OpenAI models were trained with QuickGELU
|
601 |
+
cast_dtype=cast_dtype,
|
602 |
+
)
|
603 |
+
|
604 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
605 |
+
state_dict.pop(key, None)
|
606 |
+
|
607 |
+
convert_weights_to_fp16(model) # OpenAI state dicts are partially converted to float16
|
608 |
+
model.load_state_dict(state_dict)
|
609 |
+
return model.eval()
|
610 |
+
|
611 |
+
|
612 |
+
def trace_model(model, batch_size=256, device=torch.device('cpu')):
|
613 |
+
model.eval()
|
614 |
+
image_size = model.visual.image_size
|
615 |
+
example_images = torch.ones((batch_size, 3, image_size, image_size), device=device)
|
616 |
+
example_text = torch.zeros((batch_size, model.context_length), dtype=torch.int, device=device)
|
617 |
+
model = torch.jit.trace_module(
|
618 |
+
model,
|
619 |
+
inputs=dict(
|
620 |
+
forward=(example_images, example_text),
|
621 |
+
encode_text=(example_text,),
|
622 |
+
encode_image=(example_images,)
|
623 |
+
))
|
624 |
+
model.visual.image_size = image_size
|
625 |
+
return model
|
626 |
+
|
627 |
+
def resize_pos_embed_timm(state_dict, model, interpolation: str = 'bicubic', antialias: bool = True):
|
628 |
+
# Rescale the grid of position embeddings when loading from state_dict
|
629 |
+
old_pos_embed = state_dict.get('visual.trunk.pos_embed', None) # 1, 196, 1024]
|
630 |
+
if old_pos_embed is None:
|
631 |
+
return
|
632 |
+
|
633 |
+
grid_size = to_2tuple(model.visual.trunk.patch_embed.grid_size)
|
634 |
+
|
635 |
+
|
636 |
+
if hasattr(model.visual.trunk, 'cls_token') and model.visual.trunk.cls_token is not None:
|
637 |
+
return
|
638 |
+
# extra_tokens?
|
639 |
+
raise NotImplementedError
|
640 |
+
|
641 |
+
new_seq_len = grid_size[0] * grid_size[1]
|
642 |
+
if new_seq_len == old_pos_embed.shape[0]:
|
643 |
+
return
|
644 |
+
|
645 |
+
pos_emb_img = old_pos_embed
|
646 |
+
old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img[0]))))
|
647 |
+
old_pos_emb_img = pos_emb_img
|
648 |
+
logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size) # Resizing position embedding grid-size from (1, 1) to (21, 21)
|
649 |
+
pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
|
650 |
+
|
651 |
+
pos_emb_img = F.interpolate(
|
652 |
+
pos_emb_img,
|
653 |
+
size=grid_size,
|
654 |
+
mode=interpolation,
|
655 |
+
antialias=antialias,
|
656 |
+
align_corners=False,
|
657 |
+
)
|
658 |
+
pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)
|
659 |
+
state_dict['visual.trunk.pos_embed'] = pos_emb_img
|
660 |
+
|
661 |
+
def resize_pos_embed(state_dict, model, interpolation: str = 'bicubic', antialias: bool = True):
|
662 |
+
# Rescale the grid of position embeddings when loading from state_dict
|
663 |
+
pe_key_name = 'visual.positional_embedding'
|
664 |
+
old_pos_embed = state_dict.get('visual.positional_embedding', None)
|
665 |
+
if old_pos_embed is None:
|
666 |
+
pe_key_name = 'visual.trunk.pos_embed'
|
667 |
+
old_pos_embed = state_dict.get('visual.trunk.pos_embed', None) # 1, 196, 1024]
|
668 |
+
|
669 |
+
if old_pos_embed is None:
|
670 |
+
return
|
671 |
+
|
672 |
+
if hasattr(model.visual, 'grid_size'):
|
673 |
+
grid_size = to_2tuple(model.visual.grid_size)
|
674 |
+
elif hasattr(model.visual.trunk.patch_embed, 'grid_size'):
|
675 |
+
grid_size = to_2tuple(model.visual.trunk.patch_embed.grid_size)
|
676 |
+
else:
|
677 |
+
return
|
678 |
+
|
679 |
+
if hasattr(model.visual.trunk, 'cls_token') and model.visual.trunk.cls_token is not None:
|
680 |
+
extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more)
|
681 |
+
else:
|
682 |
+
extra_tokens = 0
|
683 |
+
new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
|
684 |
+
|
685 |
+
if new_seq_len == old_pos_embed.shape[0]:
|
686 |
+
return
|
687 |
+
|
688 |
+
if extra_tokens:
|
689 |
+
pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
|
690 |
+
else:
|
691 |
+
pos_emb_tok, pos_emb_img = None, old_pos_embed
|
692 |
+
old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))
|
693 |
+
old_pos_emb_img = pos_emb_img
|
694 |
+
logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size) # Resizing position embedding grid-size from (1, 1) to (21, 21)
|
695 |
+
pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
|
696 |
+
|
697 |
+
|
698 |
+
pos_emb_img = F.interpolate(
|
699 |
+
pos_emb_img,
|
700 |
+
size=grid_size,
|
701 |
+
mode=interpolation,
|
702 |
+
antialias=antialias,
|
703 |
+
align_corners=False,
|
704 |
+
)
|
705 |
+
pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
|
706 |
+
if pos_emb_tok is not None:
|
707 |
+
new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
|
708 |
+
else:
|
709 |
+
new_pos_embed = pos_emb_img
|
710 |
+
state_dict[pe_key_name] = new_pos_embed
|
711 |
+
|
712 |
+
def resize_text_pos_embed(state_dict, model, interpolation: str = 'linear', antialias: bool = False):
|
713 |
+
old_pos_embed = state_dict.get('positional_embedding', None)
|
714 |
+
if old_pos_embed is None:
|
715 |
+
return
|
716 |
+
# FIXME add support for text cls_token
|
717 |
+
model_pos_embed = getattr(model, 'positional_embedding', None)
|
718 |
+
if model_pos_embed is None:
|
719 |
+
model_pos_embed = getattr(model.text, 'positional_embedding', None)
|
720 |
+
|
721 |
+
old_num_pos = old_pos_embed.shape[0]
|
722 |
+
old_width = old_pos_embed.shape[1]
|
723 |
+
num_pos = model_pos_embed.shape[0]
|
724 |
+
width = model_pos_embed.shape[1]
|
725 |
+
assert old_width == width, 'text pos_embed width changed!'
|
726 |
+
if old_num_pos == num_pos:
|
727 |
+
return
|
728 |
+
|
729 |
+
logging.info('Resizing text position embedding num_pos from %s to %s', old_num_pos, num_pos)
|
730 |
+
old_pos_embed = old_pos_embed.reshape(1, old_num_pos, old_width).permute(0, 2, 1)
|
731 |
+
old_pos_embed = F.interpolate(
|
732 |
+
old_pos_embed,
|
733 |
+
size=num_pos,
|
734 |
+
mode=interpolation,
|
735 |
+
antialias=antialias,
|
736 |
+
align_corners=False,
|
737 |
+
)
|
738 |
+
old_pos_embed = old_pos_embed.permute(0, 2, 1)[0]
|
739 |
+
new_pos_embed = old_pos_embed
|
740 |
+
|
741 |
+
state_dict['positional_embedding'] = new_pos_embed
|
preprocessor_config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": 336,
|
3 |
+
"do_center_crop": true,
|
4 |
+
"do_normalize": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"feature_extractor_type": "CLIPFeatureExtractor",
|
7 |
+
"image_mean": [
|
8 |
+
0.48145466,
|
9 |
+
0.4578275,
|
10 |
+
0.40821073
|
11 |
+
],
|
12 |
+
"image_std": [
|
13 |
+
0.26862954,
|
14 |
+
0.26130258,
|
15 |
+
0.27577711
|
16 |
+
],
|
17 |
+
"resample": 3,
|
18 |
+
"size": 336
|
19 |
+
}
|
20 |
+
|
timm_model.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" timm model adapter
|
2 |
+
|
3 |
+
Wraps timm (https://github.com/rwightman/pytorch-image-models) models for use as a vision tower in CLIP model (OpenCLIP).
|
4 |
+
"""
|
5 |
+
import logging
|
6 |
+
from collections import OrderedDict
|
7 |
+
|
8 |
+
import torch, sys
|
9 |
+
import torch.nn as nn
|
10 |
+
import timm
|
11 |
+
|
12 |
+
try:
|
13 |
+
import timm
|
14 |
+
from timm.models.layers import Mlp, to_2tuple
|
15 |
+
try:
|
16 |
+
# old timm imports < 0.8.1
|
17 |
+
from timm.models.layers.attention_pool2d import RotAttentionPool2d
|
18 |
+
from timm.models.layers.attention_pool2d import AttentionPool2d as AbsAttentionPool2d
|
19 |
+
except ImportError:
|
20 |
+
# new timm imports >= 0.8.1
|
21 |
+
from timm.layers import RotAttentionPool2d
|
22 |
+
from timm.layers import AttentionPool2d as AbsAttentionPool2d
|
23 |
+
except ImportError:
|
24 |
+
timm = None
|
25 |
+
from timm.models import create_model
|
26 |
+
from open_clip.utils import freeze_batch_norm_2d
|
27 |
+
|
28 |
+
from .vitamin import *
|
29 |
+
|
30 |
+
class TimmModel(nn.Module):
|
31 |
+
""" timm model adapter
|
32 |
+
"""
|
33 |
+
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
model_name,
|
37 |
+
embed_dim,
|
38 |
+
image_size=224,
|
39 |
+
pool='avg',
|
40 |
+
proj='linear',
|
41 |
+
proj_bias=False,
|
42 |
+
drop=0.,
|
43 |
+
drop_path=None,
|
44 |
+
patch_drop=None,
|
45 |
+
pretrained=False,
|
46 |
+
):
|
47 |
+
super().__init__()
|
48 |
+
if timm is None:
|
49 |
+
raise RuntimeError("Please `pip install timm` to use timm models.")
|
50 |
+
self.image_size = to_2tuple(image_size)
|
51 |
+
|
52 |
+
# setup kwargs that may not be common across all models
|
53 |
+
timm_kwargs = {}
|
54 |
+
if drop_path is not None:
|
55 |
+
timm_kwargs['drop_path_rate'] = drop_path
|
56 |
+
if patch_drop is not None:
|
57 |
+
timm_kwargs['patch_drop_rate'] = patch_drop
|
58 |
+
|
59 |
+
custom_pool = pool in ('abs_attn', 'rot_attn')
|
60 |
+
if not proj and not custom_pool:
|
61 |
+
# use network classifier head as projection if no proj specified and no custom pooling used
|
62 |
+
self.trunk = timm.create_model(
|
63 |
+
model_name,
|
64 |
+
num_classes=embed_dim,
|
65 |
+
global_pool=pool,
|
66 |
+
pretrained=pretrained,
|
67 |
+
**timm_kwargs,
|
68 |
+
)
|
69 |
+
prev_chs = embed_dim
|
70 |
+
else:
|
71 |
+
self.trunk = timm.create_model(
|
72 |
+
model_name,
|
73 |
+
pretrained=pretrained,
|
74 |
+
**timm_kwargs,
|
75 |
+
)
|
76 |
+
feat_size = self.trunk.default_cfg.get('pool_size', None)
|
77 |
+
feature_ndim = 1 if not feat_size else 2
|
78 |
+
if custom_pool:
|
79 |
+
assert feature_ndim == 2
|
80 |
+
# if attn pooling used, remove both classifier and default pool
|
81 |
+
self.trunk.reset_classifier(0, global_pool='')
|
82 |
+
else:
|
83 |
+
# reset global pool if pool config set, otherwise leave as network default
|
84 |
+
reset_kwargs = dict(global_pool=pool) if pool else {}
|
85 |
+
self.trunk.reset_classifier(0, **reset_kwargs)
|
86 |
+
prev_chs = self.trunk.num_features
|
87 |
+
|
88 |
+
head_layers = OrderedDict()
|
89 |
+
|
90 |
+
# Add custom pooling to head
|
91 |
+
if pool == 'abs_attn':
|
92 |
+
head_layers['pool'] = AbsAttentionPool2d(prev_chs, feat_size=feat_size, out_features=embed_dim)
|
93 |
+
prev_chs = embed_dim
|
94 |
+
elif pool == 'rot_attn':
|
95 |
+
head_layers['pool'] = RotAttentionPool2d(prev_chs, out_features=embed_dim)
|
96 |
+
prev_chs = embed_dim
|
97 |
+
|
98 |
+
# NOTE attention pool ends with a projection layer, so proj should usually be set to '' if such pooling is used
|
99 |
+
if proj == 'linear':
|
100 |
+
head_layers['drop'] = nn.Dropout(drop)
|
101 |
+
head_layers['proj'] = nn.Linear(prev_chs, embed_dim, bias=proj_bias)
|
102 |
+
elif proj == 'mlp':
|
103 |
+
head_layers['mlp'] = Mlp(prev_chs, 2 * embed_dim, embed_dim, drop=(drop, 0), bias=(True, proj_bias))
|
104 |
+
else:
|
105 |
+
assert not proj, f'Unknown projection type {proj}.'
|
106 |
+
|
107 |
+
self.head = nn.Sequential(head_layers)
|
108 |
+
|
109 |
+
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
110 |
+
""" lock modules
|
111 |
+
Args:
|
112 |
+
unlocked_groups (int): leave last n layer groups unlocked (default: 0)
|
113 |
+
"""
|
114 |
+
if not unlocked_groups:
|
115 |
+
# lock full model
|
116 |
+
for param in self.trunk.parameters():
|
117 |
+
param.requires_grad = False
|
118 |
+
if freeze_bn_stats:
|
119 |
+
freeze_batch_norm_2d(self.trunk)
|
120 |
+
else:
|
121 |
+
# NOTE: partial freeze requires latest timm (master) branch and is subject to change
|
122 |
+
try:
|
123 |
+
# FIXME import here until API stable and in an official release
|
124 |
+
from timm.models.helpers import group_parameters, group_modules
|
125 |
+
except ImportError:
|
126 |
+
raise RuntimeError(
|
127 |
+
'Please install latest timm `pip install git+https://github.com/rwightman/pytorch-image-models`')
|
128 |
+
matcher = self.trunk.group_matcher()
|
129 |
+
gparams = group_parameters(self.trunk, matcher)
|
130 |
+
max_layer_id = max(gparams.keys())
|
131 |
+
max_layer_id = max_layer_id - unlocked_groups
|
132 |
+
for group_idx in range(max_layer_id + 1):
|
133 |
+
group = gparams[group_idx]
|
134 |
+
for param in group:
|
135 |
+
self.trunk.get_parameter(param).requires_grad = False
|
136 |
+
if freeze_bn_stats:
|
137 |
+
gmodules = group_modules(self.trunk, matcher, reverse=True)
|
138 |
+
gmodules = {k for k, v in gmodules.items() if v <= max_layer_id}
|
139 |
+
freeze_batch_norm_2d(self.trunk, gmodules)
|
140 |
+
|
141 |
+
@torch.jit.ignore
|
142 |
+
def set_grad_checkpointing(self, enable=True):
|
143 |
+
try:
|
144 |
+
self.trunk.set_grad_checkpointing(enable)
|
145 |
+
except Exception as e:
|
146 |
+
logging.warning('grad checkpointing not supported for this timm image tower, continuing without...')
|
147 |
+
|
148 |
+
def forward(self, x):
|
149 |
+
x = self.trunk(x)
|
150 |
+
x = self.head(x)
|
151 |
+
return x
|
vitamin.py
ADDED
@@ -0,0 +1,795 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" ViTamin
|
2 |
+
|
3 |
+
Paper: Designing Scalable Vison Models in the Vision-Language Era
|
4 |
+
|
5 |
+
@misc{chen2023designing,
|
6 |
+
title={Designing Scalable Vison Models in the Vision-Language Era},
|
7 |
+
author={Jieneng Chen and Qihang Yu and Xiaohui Shen and Alan Yuille and Liang-Cheih Chen},
|
8 |
+
year={2023},
|
9 |
+
archivePrefix={arXiv},
|
10 |
+
primaryClass={cs.CV}
|
11 |
+
}
|
12 |
+
|
13 |
+
Based on Apache 2.0 licensed code at https://github.com/ViTamin/ViTamin
|
14 |
+
|
15 |
+
Modifications and timm support by Jieneng Chen 2023
|
16 |
+
|
17 |
+
Adapted from timm codebase, thanks!
|
18 |
+
"""
|
19 |
+
|
20 |
+
from functools import partial
|
21 |
+
from typing import List, Tuple
|
22 |
+
from dataclasses import dataclass, replace
|
23 |
+
from typing import Callable, Optional, Union, Tuple, List, Sequence
|
24 |
+
import math, time
|
25 |
+
from torch.jit import Final
|
26 |
+
import torch
|
27 |
+
import torch.nn as nn
|
28 |
+
import torch.nn.functional as F
|
29 |
+
import timm
|
30 |
+
from torch.utils.checkpoint import checkpoint
|
31 |
+
from timm.models.layers import create_attn, get_norm_layer, get_norm_act_layer, create_conv2d, make_divisible, trunc_normal_tf_
|
32 |
+
|
33 |
+
|
34 |
+
from timm.layers import to_2tuple, DropPath, Format, trunc_normal_
|
35 |
+
from timm.layers.norm_act import _create_act
|
36 |
+
from timm.models._registry import register_model
|
37 |
+
from timm.models._manipulate import named_apply, checkpoint_seq
|
38 |
+
from timm.models._builder import build_model_with_cfg
|
39 |
+
from timm.models.vision_transformer import get_act_layer, Type, LayerType, Mlp, Block, PatchEmbed, VisionTransformer, checkpoint_filter_fn, get_init_weights_vit, init_weights_vit_timm, _load_weights
|
40 |
+
import logging
|
41 |
+
from collections import OrderedDict
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
@dataclass
|
46 |
+
class VitConvCfg:
|
47 |
+
expand_ratio: float = 4.0
|
48 |
+
expand_output: bool = True # calculate expansion channels from output (vs input chs)
|
49 |
+
kernel_size: int = 3
|
50 |
+
group_size: int = 1 # 1 == depthwise
|
51 |
+
pre_norm_act: bool = False # activation after pre-norm
|
52 |
+
stride_mode: str = 'dw' # stride done via one of 'pool', '1x1', 'dw'
|
53 |
+
pool_type: str = 'avg2'
|
54 |
+
downsample_pool_type: str = 'avg2'
|
55 |
+
act_layer: str = 'gelu' # stem & stage 1234
|
56 |
+
norm_layer: str = ''
|
57 |
+
norm_layer_cl: str = ''
|
58 |
+
norm_eps: Optional[float] = None
|
59 |
+
down_shortcut: Optional[bool] = True
|
60 |
+
mlp: str = 'mlp'
|
61 |
+
|
62 |
+
def __post_init__(self):
|
63 |
+
use_mbconv = True
|
64 |
+
if not self.norm_layer:
|
65 |
+
self.norm_layer = 'batchnorm2d' if use_mbconv else 'layernorm2d'
|
66 |
+
if not self.norm_layer_cl and not use_mbconv:
|
67 |
+
self.norm_layer_cl = 'layernorm'
|
68 |
+
if self.norm_eps is None:
|
69 |
+
self.norm_eps = 1e-5 if use_mbconv else 1e-6
|
70 |
+
self.downsample_pool_type = self.downsample_pool_type or self.pool_type
|
71 |
+
|
72 |
+
@dataclass
|
73 |
+
class VitCfg:
|
74 |
+
embed_dim: Tuple[Union[int, Tuple[int, ...]], ...] = (96, 192, 384, 768)
|
75 |
+
depths: Tuple[Union[int, Tuple[int, ...]], ...] = (2, 3, 5, 2)
|
76 |
+
stem_width: int = 64
|
77 |
+
conv_cfg: VitConvCfg = VitConvCfg()
|
78 |
+
weight_init: str = 'vit_eff'
|
79 |
+
head_type: str = ""
|
80 |
+
stem_type: str = "stem"
|
81 |
+
|
82 |
+
def _init_conv(module, name, scheme=''):
|
83 |
+
if isinstance(module, nn.Conv2d):
|
84 |
+
fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels
|
85 |
+
fan_out //= module.groups
|
86 |
+
nn.init.normal_(module.weight, 0, math.sqrt(2.0 / fan_out))
|
87 |
+
if module.bias is not None:
|
88 |
+
nn.init.zeros_(module.bias)
|
89 |
+
|
90 |
+
class Stem(nn.Module):
|
91 |
+
def __init__(
|
92 |
+
self,
|
93 |
+
in_chs: int,
|
94 |
+
out_chs: int,
|
95 |
+
act_layer: str = 'gelu',
|
96 |
+
norm_layer: str = 'layernorm2d',
|
97 |
+
norm_eps: float = 1e-6,
|
98 |
+
bias: bool = True,
|
99 |
+
):
|
100 |
+
super().__init__()
|
101 |
+
self.grad_checkpointing=False
|
102 |
+
norm_act_layer = partial(get_norm_act_layer(norm_layer, act_layer), eps=norm_eps)
|
103 |
+
self.out_chs = out_chs
|
104 |
+
self.conv1 = create_conv2d(in_chs, out_chs, 3, stride=2, bias=bias)
|
105 |
+
self.norm1 = norm_act_layer(out_chs)
|
106 |
+
self.conv2 = create_conv2d(out_chs, out_chs, 3, stride=1, bias=bias)
|
107 |
+
named_apply(_init_conv, self)
|
108 |
+
|
109 |
+
def forward(self, x):
|
110 |
+
if self.grad_checkpointing:
|
111 |
+
x = checkpoint(self.conv1, x)
|
112 |
+
x = self.norm1(x)
|
113 |
+
x = checkpoint(self.conv2, x)
|
114 |
+
else:
|
115 |
+
x = self.conv1(x)
|
116 |
+
x = self.norm1(x)
|
117 |
+
x = self.conv2(x)
|
118 |
+
|
119 |
+
return x
|
120 |
+
|
121 |
+
class Downsample2d(nn.Module):
|
122 |
+
def __init__(
|
123 |
+
self,
|
124 |
+
dim: int,
|
125 |
+
dim_out: int,
|
126 |
+
bias: bool = True,
|
127 |
+
):
|
128 |
+
super().__init__()
|
129 |
+
self.pool = nn.AvgPool2d(kernel_size=3, stride=2, padding=1, count_include_pad=False)
|
130 |
+
if dim != dim_out:
|
131 |
+
self.expand = nn.Conv2d(dim, dim_out, 1, bias=bias) # 1x1 conv
|
132 |
+
else:
|
133 |
+
self.expand = nn.Identity()
|
134 |
+
|
135 |
+
def forward(self, x):
|
136 |
+
x = self.pool(x)
|
137 |
+
x = self.expand(x)
|
138 |
+
return x
|
139 |
+
|
140 |
+
|
141 |
+
class StridedConv(nn.Module):
|
142 |
+
""" downsample 2d as well
|
143 |
+
"""
|
144 |
+
def __init__(
|
145 |
+
self,
|
146 |
+
kernel_size=3,
|
147 |
+
stride=2,
|
148 |
+
padding=1,
|
149 |
+
in_chans=3,
|
150 |
+
embed_dim=768,
|
151 |
+
):
|
152 |
+
super().__init__()
|
153 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
|
154 |
+
norm_layer = partial(get_norm_layer('layernorm2d'), eps=1e-6)
|
155 |
+
self.norm = norm_layer(in_chans)
|
156 |
+
|
157 |
+
def forward(self, x):
|
158 |
+
x = self.norm(x)
|
159 |
+
x = self.proj(x)
|
160 |
+
return x
|
161 |
+
|
162 |
+
|
163 |
+
class MbConvLNBlock(nn.Module):
|
164 |
+
def __init__(
|
165 |
+
self,
|
166 |
+
in_chs: int,
|
167 |
+
out_chs: int,
|
168 |
+
stride: int = 1,
|
169 |
+
drop_path: float = 0.,
|
170 |
+
kernel_size: int = 3,
|
171 |
+
norm_layer: str = 'layernorm2d',
|
172 |
+
norm_eps: float = 1e-6,
|
173 |
+
act_layer: str = 'gelu',
|
174 |
+
expand_ratio: float = 4.0,
|
175 |
+
):
|
176 |
+
super(MbConvLNBlock, self).__init__()
|
177 |
+
self.stride, self.in_chs, self.out_chs = stride, in_chs, out_chs
|
178 |
+
mid_chs = make_divisible(out_chs * expand_ratio)
|
179 |
+
prenorm_act_layer = partial(get_norm_act_layer(norm_layer, act_layer), eps=norm_eps)
|
180 |
+
|
181 |
+
if stride == 2:
|
182 |
+
self.shortcut = Downsample2d(in_chs, out_chs, bias=True)
|
183 |
+
elif in_chs != out_chs:
|
184 |
+
self.shortcut = nn.Conv2d(in_chs, out_chs, 1, bias=True)
|
185 |
+
else:
|
186 |
+
self.shortcut = nn.Identity()
|
187 |
+
|
188 |
+
self.pre_norm = prenorm_act_layer(in_chs, apply_act=False)
|
189 |
+
self.down = nn.Identity()
|
190 |
+
self.conv1_1x1 = create_conv2d(in_chs, mid_chs, 1, stride=1, bias=True)
|
191 |
+
self.act1 = _create_act(act_layer, inplace=True)
|
192 |
+
self.act2 = _create_act(act_layer, inplace=True)
|
193 |
+
|
194 |
+
self.conv2_kxk = create_conv2d(mid_chs, mid_chs, kernel_size, stride=stride, dilation=1, groups=mid_chs, bias=True)
|
195 |
+
self.conv3_1x1 = create_conv2d(mid_chs, out_chs, 1, bias=True)
|
196 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
197 |
+
|
198 |
+
|
199 |
+
def init_weights(self, scheme=''):
|
200 |
+
named_apply(partial(_init_conv, scheme=scheme), self)
|
201 |
+
|
202 |
+
def forward(self, x):
|
203 |
+
shortcut = self.shortcut(x)
|
204 |
+
|
205 |
+
x = self.pre_norm(x)
|
206 |
+
x = self.down(x) # nn.Identity()
|
207 |
+
|
208 |
+
# 1x1 expansion conv & act
|
209 |
+
x = self.conv1_1x1(x)
|
210 |
+
x = self.act1(x)
|
211 |
+
|
212 |
+
# (strided) depthwise 3x3 conv & act
|
213 |
+
x = self.conv2_kxk(x)
|
214 |
+
x = self.act2(x)
|
215 |
+
|
216 |
+
# 1x1 linear projection to output width
|
217 |
+
x = self.conv3_1x1(x)
|
218 |
+
x = self.drop_path(x) + shortcut
|
219 |
+
|
220 |
+
return x
|
221 |
+
|
222 |
+
|
223 |
+
class MbConvStages(nn.Module):
|
224 |
+
""" stage 1 and stage 2 of ViTamin: MBConv-LN blocks
|
225 |
+
"""
|
226 |
+
def __init__(
|
227 |
+
self,
|
228 |
+
cfg: VitCfg,
|
229 |
+
img_size: Union[int, Tuple[int, int]] = 224, # place holder
|
230 |
+
in_chans: int = 3,
|
231 |
+
):
|
232 |
+
super().__init__()
|
233 |
+
self.grad_checkpointing = False
|
234 |
+
self.stem = Stem(
|
235 |
+
in_chs=in_chans,
|
236 |
+
out_chs=cfg.stem_width,
|
237 |
+
)
|
238 |
+
stages = []
|
239 |
+
self.num_stages = len(cfg.embed_dim)
|
240 |
+
for s, dim in enumerate(cfg.embed_dim[:2]):
|
241 |
+
blocks = []
|
242 |
+
stage_in_chs = cfg.embed_dim[s-1] if s>0 else cfg.stem_width
|
243 |
+
for d in range(cfg.depths[s]):
|
244 |
+
blocks += [MbConvLNBlock(
|
245 |
+
in_chs = stage_in_chs if d==0 else dim,
|
246 |
+
out_chs = dim,
|
247 |
+
stride = 2 if d == 0 else 1,
|
248 |
+
)]
|
249 |
+
blocks = nn.Sequential(*blocks)
|
250 |
+
stages += [blocks]
|
251 |
+
|
252 |
+
self.stages = nn.ModuleList(stages)
|
253 |
+
self.pool = StridedConv(
|
254 |
+
stride=2,
|
255 |
+
in_chans=cfg.embed_dim[1],
|
256 |
+
embed_dim=cfg.embed_dim[2]
|
257 |
+
)
|
258 |
+
|
259 |
+
def forward(self, x):
|
260 |
+
x = self.stem(x)
|
261 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
262 |
+
for stage in self.stages:
|
263 |
+
x = checkpoint_seq(stage, x)
|
264 |
+
x = checkpoint(self.pool, x)
|
265 |
+
else:
|
266 |
+
for stage in self.stages:
|
267 |
+
x = stage(x)
|
268 |
+
x = self.pool(x)
|
269 |
+
|
270 |
+
return x
|
271 |
+
|
272 |
+
class GeGluMlp(nn.Module):
|
273 |
+
def __init__(
|
274 |
+
self,
|
275 |
+
in_features,
|
276 |
+
hidden_features,
|
277 |
+
act_layer = None,
|
278 |
+
drop = 0.0,
|
279 |
+
):
|
280 |
+
super().__init__()
|
281 |
+
norm_layer = partial(get_norm_layer('layernorm'), eps=1e-6)
|
282 |
+
self.norm = norm_layer(in_features)
|
283 |
+
self.act = nn.GELU()
|
284 |
+
self.w0 = nn.Linear(in_features, hidden_features)
|
285 |
+
self.w1 = nn.Linear(in_features, hidden_features)
|
286 |
+
self.w2 = nn.Linear(hidden_features, in_features)
|
287 |
+
|
288 |
+
def forward(self, x):
|
289 |
+
x = self.norm(x)
|
290 |
+
x = self.act(self.w0(x)) * self.w1(x)
|
291 |
+
x = self.w2(x)
|
292 |
+
return x
|
293 |
+
|
294 |
+
class HybridEmbed(nn.Module):
|
295 |
+
"""
|
296 |
+
Extract feature map from stage 1-2, flatten, project to embedding dim.
|
297 |
+
"""
|
298 |
+
def __init__(
|
299 |
+
self,
|
300 |
+
backbone,
|
301 |
+
img_size=224,
|
302 |
+
patch_size=1,
|
303 |
+
feature_size=None,
|
304 |
+
in_chans=3,
|
305 |
+
embed_dim=1024,
|
306 |
+
bias=True,
|
307 |
+
dynamic_img_pad=False,
|
308 |
+
):
|
309 |
+
super().__init__()
|
310 |
+
assert isinstance(backbone, nn.Module)
|
311 |
+
img_size = to_2tuple(img_size)
|
312 |
+
patch_size = to_2tuple(patch_size)
|
313 |
+
self.img_size = img_size
|
314 |
+
self.patch_size = patch_size
|
315 |
+
self.backbone = backbone
|
316 |
+
if feature_size is None:
|
317 |
+
feature_size = img_size[0] // 16
|
318 |
+
feature_size = to_2tuple(feature_size)
|
319 |
+
if hasattr(self.backbone, 'feature_info'):
|
320 |
+
feature_dim = self.backbone.feature_info.channels()[-1]
|
321 |
+
elif hasattr(self.backbone, 'num_features'):
|
322 |
+
feature_dim = self.backbone.num_features
|
323 |
+
else:
|
324 |
+
feature_dim = embed_dim
|
325 |
+
assert feature_size[0] % patch_size[0] == 0 and feature_size[1] % patch_size[1] == 0
|
326 |
+
self.grid_size = (feature_size[0] // patch_size[0], feature_size[1] // patch_size[1])
|
327 |
+
self.num_patches = self.grid_size[0] * self.grid_size[1]
|
328 |
+
self.proj = nn.Identity()
|
329 |
+
|
330 |
+
def forward(self, x):
|
331 |
+
x = self.backbone(x)
|
332 |
+
if isinstance(x, (list, tuple)):
|
333 |
+
x = x[-1] # last feature if backbone outputs list/tuple of features
|
334 |
+
x = self.proj(x)
|
335 |
+
x = x.flatten(2).transpose(1, 2)
|
336 |
+
return x
|
337 |
+
|
338 |
+
class ViTamin(nn.Module):
|
339 |
+
""" hack timm VisionTransformer
|
340 |
+
"""
|
341 |
+
dynamic_img_size: Final[bool]
|
342 |
+
|
343 |
+
def __init__(
|
344 |
+
self,
|
345 |
+
img_size: Union[int, Tuple[int, int]] = 224,
|
346 |
+
patch_size: Union[int, Tuple[int, int]] = 16,
|
347 |
+
in_chans: int = 3,
|
348 |
+
num_classes: int = 1000,
|
349 |
+
global_pool = 'token',
|
350 |
+
embed_dim: int = 768,
|
351 |
+
depth: int = 12,
|
352 |
+
num_heads: int = 12,
|
353 |
+
mlp_ratio: float = 4.,
|
354 |
+
qkv_bias: bool = True,
|
355 |
+
qk_norm: bool = False,
|
356 |
+
init_values: Optional[float] = None,
|
357 |
+
class_token: bool = True,
|
358 |
+
no_embed_class: bool = False,
|
359 |
+
reg_tokens: int = 0,
|
360 |
+
pre_norm: bool = False,
|
361 |
+
fc_norm: Optional[bool] = None,
|
362 |
+
dynamic_img_size: bool = False,
|
363 |
+
dynamic_img_pad: bool = False,
|
364 |
+
drop_rate: float = 0.,
|
365 |
+
pos_drop_rate: float = 0.,
|
366 |
+
patch_drop_rate: float = 0.,
|
367 |
+
proj_drop_rate: float = 0.,
|
368 |
+
attn_drop_rate: float = 0.,
|
369 |
+
drop_path_rate: float = 0.,
|
370 |
+
weight_init = '',
|
371 |
+
fix_init: bool = False,
|
372 |
+
embed_layer: Callable = PatchEmbed,
|
373 |
+
norm_layer: Optional[LayerType] = None,
|
374 |
+
act_layer: Optional[LayerType] = None,
|
375 |
+
block_fn: Type[nn.Module] = Block,
|
376 |
+
mlp_layer: Type[nn.Module] = Mlp,
|
377 |
+
is_pos_embed: bool = True
|
378 |
+
) -> None:
|
379 |
+
"""
|
380 |
+
Args:
|
381 |
+
img_size: Input image size.
|
382 |
+
patch_size: Patch size.
|
383 |
+
in_chans: Number of image input channels.
|
384 |
+
num_classes: Mumber of classes for classification head.
|
385 |
+
global_pool: Type of global pooling for final sequence (default: 'token').
|
386 |
+
embed_dim: Transformer embedding dimension.
|
387 |
+
depth: Depth of transformer.
|
388 |
+
num_heads: Number of attention heads.
|
389 |
+
mlp_ratio: Ratio of mlp hidden dim to embedding dim.
|
390 |
+
qkv_bias: Enable bias for qkv projections if True.
|
391 |
+
init_values: Layer-scale init values (layer-scale enabled if not None).
|
392 |
+
class_token: Use class token.
|
393 |
+
no_embed_class: Don't include position embeddings for class (or reg) tokens.
|
394 |
+
reg_tokens: Number of register tokens.
|
395 |
+
fc_norm: Pre head norm after pool (instead of before), if None, enabled when global_pool == 'avg'.
|
396 |
+
drop_rate: Head dropout rate.
|
397 |
+
pos_drop_rate: Position embedding dropout rate.
|
398 |
+
attn_drop_rate: Attention dropout rate.
|
399 |
+
drop_path_rate: Stochastic depth rate.
|
400 |
+
weight_init: Weight initialization scheme.
|
401 |
+
fix_init: Apply weight initialization fix (scaling w/ layer index).
|
402 |
+
embed_layer: Patch embedding layer.
|
403 |
+
norm_layer: Normalization layer.
|
404 |
+
act_layer: MLP activation layer.
|
405 |
+
block_fn: Transformer block layer.
|
406 |
+
"""
|
407 |
+
super().__init__()
|
408 |
+
assert global_pool in ('', 'avg', 'token', 'map')
|
409 |
+
assert class_token or global_pool != 'token'
|
410 |
+
use_fc_norm = global_pool == 'avg' if fc_norm is None else fc_norm
|
411 |
+
norm_layer = get_norm_layer(norm_layer) or partial(nn.LayerNorm, eps=1e-6)
|
412 |
+
act_layer = get_act_layer(act_layer) or nn.GELU
|
413 |
+
|
414 |
+
self.num_classes = num_classes
|
415 |
+
self.global_pool = global_pool
|
416 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
417 |
+
self.num_prefix_tokens = 1 if class_token else 0
|
418 |
+
self.num_prefix_tokens += reg_tokens
|
419 |
+
self.num_reg_tokens = reg_tokens
|
420 |
+
self.has_class_token = class_token
|
421 |
+
self.no_embed_class = no_embed_class # don't embed prefix positions (includes reg)
|
422 |
+
self.dynamic_img_size = dynamic_img_size
|
423 |
+
self.grad_checkpointing = False
|
424 |
+
self.is_pos_embed = is_pos_embed
|
425 |
+
embed_args = {}
|
426 |
+
if dynamic_img_size:
|
427 |
+
# flatten deferred until after pos embed
|
428 |
+
embed_args.update(dict(strict_img_size=False, output_fmt='NHWC'))
|
429 |
+
|
430 |
+
# stage_1_2 = MbConvStages(cfg=VitCfg(
|
431 |
+
# embed_dim=(160, 320, 1024),
|
432 |
+
# depths=(2, 4, 1),
|
433 |
+
# stem_width=160,
|
434 |
+
# conv_cfg = VitConvCfg(
|
435 |
+
# norm_layer='layernorm2d',
|
436 |
+
# norm_eps=1e-6,
|
437 |
+
# ),
|
438 |
+
# head_type='1d',
|
439 |
+
# ),
|
440 |
+
# )
|
441 |
+
# self.patch_embed = HybridEmbed(
|
442 |
+
# stage_1_2,
|
443 |
+
# img_size=img_size,
|
444 |
+
# patch_size=1,
|
445 |
+
# in_chans=in_chans,
|
446 |
+
# embed_dim=embed_dim,
|
447 |
+
# bias=not pre_norm,
|
448 |
+
# dynamic_img_pad=dynamic_img_pad,
|
449 |
+
# **embed_args,)
|
450 |
+
self.patch_embed = embed_layer(
|
451 |
+
img_size=img_size,
|
452 |
+
patch_size=patch_size,
|
453 |
+
in_chans=in_chans,
|
454 |
+
embed_dim=embed_dim,
|
455 |
+
bias=not pre_norm, # disable bias if pre-norm is used (e.g. CLIP)
|
456 |
+
)
|
457 |
+
|
458 |
+
num_patches = self.patch_embed.num_patches
|
459 |
+
|
460 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None
|
461 |
+
self.reg_token = nn.Parameter(torch.zeros(1, reg_tokens, embed_dim)) if reg_tokens else None
|
462 |
+
|
463 |
+
if self.is_pos_embed:
|
464 |
+
embed_len = num_patches if no_embed_class else num_patches + self.num_prefix_tokens
|
465 |
+
self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * .02)
|
466 |
+
else:
|
467 |
+
self.pos_embed = None
|
468 |
+
|
469 |
+
self.pos_drop = nn.Dropout(p=pos_drop_rate)
|
470 |
+
if patch_drop_rate > 0:
|
471 |
+
self.patch_drop = PatchDropout(
|
472 |
+
patch_drop_rate,
|
473 |
+
num_prefix_tokens=self.num_prefix_tokens,
|
474 |
+
)
|
475 |
+
else:
|
476 |
+
self.patch_drop = nn.Identity()
|
477 |
+
self.norm_pre = norm_layer(embed_dim) if pre_norm else nn.Identity()
|
478 |
+
|
479 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
480 |
+
self.blocks = nn.Sequential(*[
|
481 |
+
block_fn(
|
482 |
+
dim=embed_dim,
|
483 |
+
num_heads=num_heads,
|
484 |
+
mlp_ratio=mlp_ratio,
|
485 |
+
qkv_bias=qkv_bias,
|
486 |
+
qk_norm=qk_norm,
|
487 |
+
init_values=init_values,
|
488 |
+
proj_drop=proj_drop_rate,
|
489 |
+
attn_drop=attn_drop_rate,
|
490 |
+
drop_path=dpr[i],
|
491 |
+
norm_layer=norm_layer,
|
492 |
+
act_layer=act_layer,
|
493 |
+
mlp_layer=mlp_layer,
|
494 |
+
)
|
495 |
+
for i in range(depth)])
|
496 |
+
self.norm = norm_layer(embed_dim) if not use_fc_norm else nn.Identity()
|
497 |
+
|
498 |
+
# Classifier Head
|
499 |
+
if global_pool == 'map':
|
500 |
+
self.attn_pool = AttentionPoolLatent(
|
501 |
+
self.embed_dim,
|
502 |
+
num_heads=num_heads,
|
503 |
+
mlp_ratio=mlp_ratio,
|
504 |
+
norm_layer=norm_layer,
|
505 |
+
)
|
506 |
+
else:
|
507 |
+
self.attn_pool = None
|
508 |
+
|
509 |
+
self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity()
|
510 |
+
self.head_drop = nn.Dropout(drop_rate)
|
511 |
+
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
512 |
+
|
513 |
+
if weight_init != 'skip':
|
514 |
+
self.init_weights(weight_init)
|
515 |
+
if fix_init:
|
516 |
+
self.fix_init_weight()
|
517 |
+
|
518 |
+
def init_weights(self, mode=''):
|
519 |
+
assert mode in ('jax', 'jax_nlhb', 'moco', '')
|
520 |
+
head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0.
|
521 |
+
if self.is_pos_embed:
|
522 |
+
trunc_normal_(self.pos_embed, std=.02)
|
523 |
+
if self.cls_token is not None:
|
524 |
+
nn.init.normal_(self.cls_token, std=1e-6)
|
525 |
+
named_apply(get_init_weights_vit(mode, head_bias), self)
|
526 |
+
|
527 |
+
def _init_weights(self, m):
|
528 |
+
# this fn left here for compat with downstream users
|
529 |
+
init_weights_vit_timm(m)
|
530 |
+
|
531 |
+
@torch.jit.ignore()
|
532 |
+
def load_pretrained(self, checkpoint_path, prefix=''):
|
533 |
+
_load_weights(self, checkpoint_path, prefix)
|
534 |
+
|
535 |
+
@torch.jit.ignore
|
536 |
+
def no_weight_decay(self):
|
537 |
+
if self.is_pos_embed:
|
538 |
+
return {'pos_embed', 'cls_token', 'dist_token'}
|
539 |
+
else:
|
540 |
+
return {'cls_token', 'dist_token'}
|
541 |
+
|
542 |
+
@torch.jit.ignore
|
543 |
+
def group_matcher(self, coarse=False):
|
544 |
+
return dict(
|
545 |
+
stem=r'^cls_token|pos_embed|patch_embed', # stem and embed
|
546 |
+
blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))]
|
547 |
+
)
|
548 |
+
|
549 |
+
@torch.jit.ignore
|
550 |
+
def set_grad_checkpointing(self, enable=True):
|
551 |
+
self.grad_checkpointing = enable
|
552 |
+
self.patch_embed.backbone.stem.grad_checkpointing = enable # disable https://blog.csdn.net/lhx526080338/article/details/127894671?utm_medium=distribute.pc_relevant.none-task-blog-2~default~baidujs_baidulandingword~default-1-127894671-blog-125562110.235^v38^pc_relevant_anti_t3_base&spm=1001.2101.3001.4242.2&utm_relevant_index=4
|
553 |
+
self.patch_embed.backbone.grad_checkpointing = enable
|
554 |
+
|
555 |
+
@torch.jit.ignore
|
556 |
+
def get_classifier(self):
|
557 |
+
return self.head
|
558 |
+
|
559 |
+
def reset_classifier(self, num_classes: int, global_pool=None):
|
560 |
+
self.num_classes = num_classes
|
561 |
+
if global_pool is not None:
|
562 |
+
assert global_pool in ('', 'avg', 'token')
|
563 |
+
self.global_pool = global_pool
|
564 |
+
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
565 |
+
|
566 |
+
def _pos_embed(self, x):
|
567 |
+
if self.no_embed_class:
|
568 |
+
# deit-3, updated JAX (big vision)
|
569 |
+
# position embedding does not overlap with class token, add then concat
|
570 |
+
x = x + self.pos_embed
|
571 |
+
if self.cls_token is not None:
|
572 |
+
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
|
573 |
+
else:
|
574 |
+
# original timm, JAX, and deit vit impl
|
575 |
+
# pos_embed has entry for class token, concat then add
|
576 |
+
if self.cls_token is not None:
|
577 |
+
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
|
578 |
+
x = x + self.pos_embed
|
579 |
+
return self.pos_drop(x)
|
580 |
+
|
581 |
+
def forward_features(self, x: torch.Tensor) -> torch.Tensor:
|
582 |
+
x = self.patch_embed(x)
|
583 |
+
if self.is_pos_embed:
|
584 |
+
x = self._pos_embed(x)
|
585 |
+
x = self.patch_drop(x)
|
586 |
+
x = self.norm_pre(x)
|
587 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
588 |
+
x = checkpoint_seq(self.blocks, x)
|
589 |
+
else:
|
590 |
+
x = self.blocks(x)
|
591 |
+
x = self.norm(x)
|
592 |
+
return x
|
593 |
+
|
594 |
+
def forward_head(self, x: torch.Tensor, pre_logits: bool = False) -> torch.Tensor:
|
595 |
+
if self.attn_pool is not None:
|
596 |
+
x = self.attn_pool(x)
|
597 |
+
elif self.global_pool == 'avg':
|
598 |
+
x = x[:, self.num_prefix_tokens:].mean(dim=1)
|
599 |
+
elif self.global_pool:
|
600 |
+
x = x[:, 0] # class token
|
601 |
+
x = self.fc_norm(x)
|
602 |
+
x = self.head_drop(x)
|
603 |
+
return x if pre_logits else self.head(x)
|
604 |
+
|
605 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
606 |
+
x = self.forward_features(x)
|
607 |
+
x = self.forward_head(x)
|
608 |
+
return x
|
609 |
+
|
610 |
+
def _create_vision_transformer(variant, pretrained=False, **kwargs):
|
611 |
+
if kwargs.get('features_only', None):
|
612 |
+
raise RuntimeError('features_only not implemented for Vision Transformer models.')
|
613 |
+
|
614 |
+
return build_model_with_cfg(
|
615 |
+
ViTamin, # ViTamin
|
616 |
+
variant,
|
617 |
+
pretrained,
|
618 |
+
pretrained_filter_fn=checkpoint_filter_fn,
|
619 |
+
**kwargs,
|
620 |
+
)
|
621 |
+
|
622 |
+
|
623 |
+
def _create_vision_transformer_hybrid(variant, backbone, pretrained=False, **kwargs):
|
624 |
+
embed_layer = partial(HybridEmbed, backbone=backbone)
|
625 |
+
kwargs.setdefault('patch_size', 1) # default patch size for hybrid models if not set
|
626 |
+
return _create_vision_transformer(variant, pretrained=pretrained, embed_layer=embed_layer, **kwargs)
|
627 |
+
|
628 |
+
|
629 |
+
@register_model
|
630 |
+
def vitamin_small(pretrained=False, **kwargs) -> VisionTransformer:
|
631 |
+
stage_1_2 = MbConvStages(cfg=VitCfg(
|
632 |
+
embed_dim=(64, 128, 384),
|
633 |
+
depths=(2, 4, 1),
|
634 |
+
stem_width=64,
|
635 |
+
conv_cfg = VitConvCfg(
|
636 |
+
norm_layer='layernorm2d',
|
637 |
+
norm_eps=1e-6,
|
638 |
+
),
|
639 |
+
head_type='1d',
|
640 |
+
),
|
641 |
+
)
|
642 |
+
stage3_args = dict(embed_dim=384, depth=14, num_heads=6, mlp_layer=GeGluMlp, mlp_ratio=2., class_token=False, global_pool='avg')
|
643 |
+
model = _create_vision_transformer_hybrid('vitamin_small', backbone=stage_1_2, pretrained=pretrained, **dict(stage3_args, **kwargs))
|
644 |
+
return model
|
645 |
+
|
646 |
+
|
647 |
+
@register_model
|
648 |
+
def vitamin_base(pretrained=False, **kwargs) -> VisionTransformer:
|
649 |
+
stage_1_2 = MbConvStages(cfg=VitCfg(
|
650 |
+
embed_dim=(128, 256, 768),
|
651 |
+
depths=(2, 4, 1),
|
652 |
+
stem_width=128,
|
653 |
+
conv_cfg = VitConvCfg(
|
654 |
+
norm_layer='layernorm2d',
|
655 |
+
norm_eps=1e-6,
|
656 |
+
),
|
657 |
+
head_type='1d',
|
658 |
+
),
|
659 |
+
)
|
660 |
+
stage3_args = dict(embed_dim=768, depth=14, num_heads=12, mlp_layer=GeGluMlp, mlp_ratio=2., class_token=False, global_pool='avg')
|
661 |
+
model = _create_vision_transformer_hybrid('vitamin_base', backbone=stage_1_2, pretrained=pretrained, **dict(stage3_args, **kwargs))
|
662 |
+
return model
|
663 |
+
|
664 |
+
|
665 |
+
@register_model
|
666 |
+
def vitamin_large(pretrained=False, **kwargs) -> VisionTransformer:
|
667 |
+
stage_1_2 = MbConvStages(cfg=VitCfg(
|
668 |
+
embed_dim=(160, 320, 1024),
|
669 |
+
depths=(2, 4, 1),
|
670 |
+
stem_width=160,
|
671 |
+
conv_cfg = VitConvCfg(
|
672 |
+
norm_layer='layernorm2d',
|
673 |
+
norm_eps=1e-6,
|
674 |
+
),
|
675 |
+
head_type='1d',
|
676 |
+
),
|
677 |
+
)
|
678 |
+
stage3_args = dict(embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., class_token=False, global_pool='avg')
|
679 |
+
model = _create_vision_transformer_hybrid(
|
680 |
+
'vitamin_large', backbone=stage_1_2, pretrained=pretrained, **dict(stage3_args, **kwargs))
|
681 |
+
return model
|
682 |
+
|
683 |
+
|
684 |
+
@register_model
|
685 |
+
def vitamin_large_256(pretrained=False, **kwargs) -> VisionTransformer:
|
686 |
+
backbone = MbConvStages(cfg=VitCfg(
|
687 |
+
embed_dim=(160, 320, 1024),
|
688 |
+
depths=(2, 4, 1),
|
689 |
+
stem_width=160,
|
690 |
+
conv_cfg = VitConvCfg(
|
691 |
+
norm_layer='layernorm2d',
|
692 |
+
norm_eps=1e-6,
|
693 |
+
),
|
694 |
+
head_type='1d',
|
695 |
+
),
|
696 |
+
)
|
697 |
+
model_args = dict(img_size=256, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., class_token=False, global_pool='avg')
|
698 |
+
model = _create_vision_transformer_hybrid(
|
699 |
+
'vitamin_large_256', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
|
700 |
+
return model
|
701 |
+
|
702 |
+
|
703 |
+
@register_model
|
704 |
+
def vitamin_large_336(pretrained=False, **kwargs) -> VisionTransformer:
|
705 |
+
backbone = MbConvStages(cfg=VitCfg(
|
706 |
+
embed_dim=(160, 320, 1024),
|
707 |
+
depths=(2, 4, 1),
|
708 |
+
stem_width=160,
|
709 |
+
conv_cfg = VitConvCfg(
|
710 |
+
norm_layer='layernorm2d',
|
711 |
+
norm_eps=1e-6,
|
712 |
+
),
|
713 |
+
head_type='1d',
|
714 |
+
),
|
715 |
+
)
|
716 |
+
model_args = dict(img_size=336, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., class_token=False, global_pool='avg')
|
717 |
+
model = _create_vision_transformer_hybrid(
|
718 |
+
'vitamin_large_336', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
@register_model
|
723 |
+
def vitamin_large_384(pretrained=False, **kwargs) -> VisionTransformer:
|
724 |
+
backbone = MbConvStages(cfg=VitCfg(
|
725 |
+
embed_dim=(160, 320, 1024),
|
726 |
+
depths=(2, 4, 1),
|
727 |
+
stem_width=160,
|
728 |
+
conv_cfg = VitConvCfg(
|
729 |
+
norm_layer='layernorm2d',
|
730 |
+
norm_eps=1e-6,
|
731 |
+
),
|
732 |
+
head_type='1d',
|
733 |
+
),
|
734 |
+
)
|
735 |
+
model_args = dict(img_size=384, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., class_token=False, is_pos_embed=False, global_pool='avg')
|
736 |
+
model = _create_vision_transformer_hybrid(
|
737 |
+
'vitamin_large_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
|
738 |
+
return model
|
739 |
+
|
740 |
+
|
741 |
+
@register_model
|
742 |
+
def vitamin_xlarge_256(pretrained=False, **kwargs) -> VisionTransformer:
|
743 |
+
backbone = MbConvStages(cfg=VitCfg(
|
744 |
+
embed_dim=(192, 384, 1152),
|
745 |
+
depths=(2, 4, 1),
|
746 |
+
stem_width=192,
|
747 |
+
conv_cfg = VitConvCfg(
|
748 |
+
norm_layer='layernorm2d',
|
749 |
+
norm_eps=1e-6,
|
750 |
+
),
|
751 |
+
head_type='1d',
|
752 |
+
),
|
753 |
+
)
|
754 |
+
model_args = dict(img_size=256, embed_dim=1152, depth=32, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., class_token=False, is_pos_embed=False, global_pool='avg')
|
755 |
+
model = _create_vision_transformer_hybrid(
|
756 |
+
'vitamin_xlarge_256', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
|
757 |
+
return model
|
758 |
+
|
759 |
+
|
760 |
+
@register_model
|
761 |
+
def vitamin_xlarge_384(pretrained=False, **kwargs) -> VisionTransformer:
|
762 |
+
backbone = MbConvStages(cfg=VitCfg(
|
763 |
+
embed_dim=(192, 384, 1152),
|
764 |
+
depths=(2, 4, 1),
|
765 |
+
stem_width=192,
|
766 |
+
conv_cfg = VitConvCfg(
|
767 |
+
norm_layer='layernorm2d',
|
768 |
+
norm_eps=1e-6,
|
769 |
+
),
|
770 |
+
head_type='1d',
|
771 |
+
),
|
772 |
+
)
|
773 |
+
model_args = dict(img_size=384, embed_dim=1152, depth=32, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., class_token=False, is_pos_embed=False, global_pool='avg')
|
774 |
+
model = _create_vision_transformer_hybrid(
|
775 |
+
'vitamin_xlarge_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
|
776 |
+
return model
|
777 |
+
|
778 |
+
|
779 |
+
def count_params(model: nn.Module):
|
780 |
+
return sum([m.numel() for m in model.parameters()])
|
781 |
+
|
782 |
+
|
783 |
+
def count_stage_params(model: nn.Module, prefix='none'):
|
784 |
+
collections = []
|
785 |
+
for name, m in model.named_parameters():
|
786 |
+
print(name)
|
787 |
+
if name.startswith(prefix):
|
788 |
+
collections.append(m.numel())
|
789 |
+
return sum(collections)
|
790 |
+
|
791 |
+
|
792 |
+
if __name__ == "__main__":
|
793 |
+
model = timm.create_model('vitamin_large', num_classes=10).cuda()
|
794 |
+
# x = torch.rand([2,3,224,224]).cuda()
|
795 |
+
check_keys(model)
|