English
Inference Endpoints
real-esrgan / handler.py
garg-aayush's picture
update handler file: add checks for image size, mode. Add exceptions
6ead77d
raw
history blame
4.34 kB
import torch
from PIL import Image
from io import BytesIO
from realesrgan import RealESRGANer
from typing import Dict, List, Any
import os
from pathlib import Path
from basicsr.archs.rrdbnet_arch import RRDBNet
import numpy as np
import cv2
import PIL
import torch
import base64
class EndpointHandler:
def __init__(self, path=""):
self.model = RealESRGANer(
scale=4,
# model_path=f"/repository/weights/Real-ESRGAN-x4plus.pth",
model_path="/workspace/real-esrgan/weights/Real-ESRGAN-x4plus.pth",
# dni_weight=dni_weight,
model= RRDBNet(num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=4
),
tile=0,
tile_pad=10,
# pre_pad=args.pre_pad,
half=True,
# gpu_id=args.gpu_id
)
def __call__(self, data: Any) -> Dict[str, List[float]]:
try:
# get inputs
inputs = data.pop("inputs", data)
# get outscale
outscale = float(inputs.pop("outscale", 3))
# decode base64 image to PIL
image = Image.open(BytesIO(base64.b64decode(inputs['image'])))
in_size, in_mode = image.size, image.mode
# check image size and mode and return dict
assert in_mode in ["RGB", "RGBA", "L"], f"Unsupported image mode: {in_mode}"
assert in_size[0] * in_size[1] < 1400*1400, f"Image is too large: {in_size}: {in_size[0] * in_size[1]} is greater than {1400*1400}"
assert outscale > 1 and outscale <=10, f"Outscale must be between 1 and 10: {outscale}"
# debug
print(f"image.size: {in_size}, image.mode: {in_mode}, outscale: {outscale}")
# Convert RGB to BGR (PIL uses RGB, OpenCV expects BGR)
opencv_image = np.array(image)
if in_mode == "RGB":
opencv_image = cv2.cvtColor(opencv_image, cv2.COLOR_RGB2BGR)
elif in_mode == "RGBA":
opencv_image = cv2.cvtColor(opencv_image, cv2.COLOR_RGBA2BGRA)
elif in_mode == "L":
opencv_image = cv2.cvtColor(opencv_image, cv2.COLOR_GRAY2RGB)
else:
raise ValueError(f"Unsupported image mode: {in_mode}")
# enhance image
output, _ = self.model.enhance(opencv_image, outscale=outscale)
# debug
print(f"output.shape: {output.shape}")
# convert to RGB/RGBA format
out_shape = output.shape
if len(out_shape) == 3:
if out_shape[2] == 3:
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
elif out_shape[2] == 4:
output = cv2.cvtColor(output, cv2.COLOR_BGRA2RGBA)
else:
output = cv2.cvtColor(output, cv2.COLOR_GRAY2RGB)
# convert to PIL image
img_byte_arr = BytesIO()
output = Image.fromarray(output)
# save to BytesIO
output.save(img_byte_arr, format='PNG')
img_str = base64.b64encode(img_byte_arr.getvalue())
img_str = img_str.decode()
return {"out_image": img_str,
"error": None
}
# handle errors
except AssertionError as e:
print(f"AssertionError: {e}")
return {"out_image": None, "error": str(e)}
except KeyError as e:
print(f"KeyError: {e}")
return {"out_image": None, "error": f"Missing key: {e}"}
except ValueError as e:
print(f"ValueError: {e}")
return {"out_image": None, "error": str(e)}
except PIL.UnidentifiedImageError as e:
print(f"PIL.UnidentifiedImageError: {e}")
return {"out_image": None, "error": "Invalid image format"}
except Exception as e:
print(f"Exception: {e}")
return {"out_image": None, "error": "An unexpected error occurred"}