{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.10/dist-packages/torchvision/transforms/functional_tensor.py:5: UserWarning: The torchvision.transforms.functional_tensor module is deprecated in 0.15 and will be **removed in 0.17**. Please don't rely on it. You probably just need to use APIs in torchvision.transforms.functional or in torchvision.transforms.v2.functional.\n", " warnings.warn(\n" ] } ], "source": [ "import os\n", "from handler import EndpointHandler\n", "import base64\n", "from io import BytesIO\n", "from PIL import Image\n", "import cv2\n", "import random" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "os.environ[\"AWS_ACCESS_KEY_ID\"] = \"\"\n", "os.environ[\"AWS_SECRET_ACCESS_KEY\"] = \"\"\n", "os.environ[\"S3_BUCKET_NAME\"] = \"\"\n", "os.environ[\"TILING_SIZE\"] = \"1000\"" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# init handler\n", "my_handler = EndpointHandler(path=\".\")" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "image.size: (1024, 1024), image.mode: RGB, outscale: 4.0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\tTile 1/4\n", "\tTile 2/4\n", "\tTile 3/4\n", "\tTile 4/4\n", "output.shape: (4096, 4096, 3)\n", "https://jiffy-staging-upscaled-images.s3.amazonaws.com/d91323cb-0801-45b7-8109-9739212037ed.png d91323cb-0801-45b7-8109-9739212037ed.png\n" ] } ], "source": [ "img_dir = \"test_data/\"\n", "img_urls = [\"https://jiffy-transfers.imgix.net/2/attachments/r267odvvfmkp6c5lccj1y6f9trb0?ixlib=rb-0.3.5\",\n", " # \"https://jiffy-staging-transfers.imgix.net/2/development/attachments/zo31eau0ykhbwoddrjtlbyz6w9mp?ixlib=rb-0.3.5\", # larger than > 1.96M pixels\n", " # \"https://jiffy-staging-transfers.imgix.net/2/development/attachments/b8ecchms9rr9wk3g71kfpfprqg1v?ixlib=rb-0.3.5\" # larger than > 1.96M pixels\n", " ]\n", "\n", "out_scales = [4, 3, 2]\n", "for img_url, outscale in zip(img_urls, out_scales):\n", " # create payload\n", " payload = {\n", " \"inputs\": {\"image_url\": img_url, \n", " \"outscale\": outscale\n", " }\n", " }\n", " \n", " output_payload = my_handler(payload)\n", " print(output_payload[\"image_url\"], output_payload[\"image_key\"])\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 4 }