File size: 13,765 Bytes
6a85229
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ddbb1f641f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ddbb1f64280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ddbb1f64310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ddbb1f643a0>", "_build": "<function ActorCriticPolicy._build at 0x7ddbb1f64430>", "forward": "<function ActorCriticPolicy.forward at 0x7ddbb1f644c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ddbb1f64550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ddbb1f645e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ddbb1f64670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ddbb1f64700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ddbb1f64790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ddbb1f64820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ddbb1f0a0c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1723798029422245728, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHNLjb3DYUC6B81LssL7PbBo06Q6ApZKMwAAgD8AAIA/Oml0PlEMJL0kHhc8eW60ulnkjb51aYS7AAAAAAAAgD+6BhO+dxtLPxE0HrxZkuC+RiI4vrYDEz0AAAAAAAAAAI2Mqb17rou6JzzDtzN4SLI350q7bhrhNgAAAAAAAIA/jY6fPreGVz9RNpM+0kLWvprdoT7OWzW7AAAAAAAAAAD6ehm+pnDFPi4Uqj4zvrK+rzFKPSHcFj0AAAAAAAAAAFqa+D0Y8Nk9tmuMvoefOb6+j4i9Cl99vAAAAAAAAAAAoNViPmac0D7GXDi+3QezvnK9grzLveu8AAAAAAAAAAAADzU+7X5vP6KmZz4qqsq+yIkNPs7jDD0AAAAAAAAAAK2AZL4x+9o+M/+RPkP/rL5y4wi93WB8PgAAAAAAAAAAaOeWvlOjQD+qfCi9RS4PvxWS0L76tjM+AAAAAAAAAABmJsK57P6luzhriL2JJJQ8jHjrPIKoe70AAIA/AACAP01/fT32ZD66jk4Btg9OK7FbPqk7KZElNQAAgD8AAIA/AMB9PaaZBz8oIk09Nk+nvrlZgD0e7xs9AAAAAAAAAAANc/a9vkasP8SKuL6W+tm+DpPAvW9YRr4AAAAAAAAAAJr+iz1PcSq8LvQBvQNiFDy5yJA9aAz/vAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDSAUUO/cqMAWyUTSoBjAF0lEdAkPc/P9kz43V9lChoBkdAcUgHGS6lL2gHTRQBaAhHQJD34arFOwh1fZQoaAZHQHGdWdRR/ExoB02wAWgIR0CQ+wZHuqm1dX2UKGgGR0Bw8q18b70naAdNMQFoCEdAkPse4gA6uHV9lChoBkdAbja5byH2y2gHTS4BaAhHQJD7nUNKAax1fZQoaAZHQESLo/zJ6ppoB0vBaAhHQJD8zCj1wo91fZQoaAZHQHLYIicG1QZoB00OAWgIR0CQ/Q5xiobXdX2UKGgGR0BuFo2ETQE7aAdNCQFoCEdAkP0eXzDn/3V9lChoBkdAS8Zf8dgfEGgHS+NoCEdAkP2CDh99dHV9lChoBkdAb0E/nGKhtmgHTUoBaAhHQJD9usJY1YR1fZQoaAZHQHD+TgydnTRoB00IAWgIR0CQ/j/Y8Md+dX2UKGgGR0BxOlcbBGhFaAdNXAFoCEdAkP5OL3sXznV9lChoBkdAcD89ytFKCmgHTdQCaAhHQJD+xv60pmV1fZQoaAZHQG9pWRaHKwJoB02uAWgIR0CQ/v7w8W9EdX2UKGgGR0Byf40P6KtQaAdNEgFoCEdAkP95MQEpzHV9lChoBkdAcggsGxD9fmgHTSwBaAhHQJD/tFqi48V1fZQoaAZHQEEwd2gWac9oB0vDaAhHQJEAnodMj/x1fZQoaAZHQHJWgccU/OdoB00sAWgIR0CRAK02tMfzdX2UKGgGR0BDV2ovSMLnaAdL0GgIR0CRAqAprk8zdX2UKGgGR0BwhqX5WRzSaAdNwgFoCEdAkQLtbPhQ33V9lChoBkdAcSv974SHumgHTScBaAhHQJEDefHxSYR1fZQoaAZHQHCKUkjX4CZoB00bAWgIR0CRA5LxZuAJdX2UKGgGR0A2lQ+UyHmBaAdLx2gIR0CRBANG3F1kdX2UKGgGR0Bu+ciY9gWraAdNCgFoCEdAkQQad1+y7nV9lChoBkdAcK1jeKsMiWgHS/loCEdAkQRljNIK+nV9lChoBkdAcAGdYW+GoWgHS+5oCEdAkQScJD3M6nV9lChoBkdAcQT1jAi3X2gHTTMBaAhHQJEFyC/XXiB1fZQoaAZHQHAS8+JP69FoB00PAWgIR0CRBsuqm0mddX2UKGgGR0Bu235zo2XLaAdNPwFoCEdAkQbdSEUTMHV9lChoBkdAcjkJgLJCB2gHTQgBaAhHQJEG5/axoqV1fZQoaAZHQHDOqh+OOsFoB00qAWgIR0CRBv1G9YfXdX2UKGgGR0Bx/XgNwzciaAdNGwFoCEdAkQjxJ2+wknV9lChoBkdAc40hxo7FKmgHTbkBaAhHQJEKB9uxbB51fZQoaAZHQGxJSrYGt6poB00RAWgIR0CRC63Cbc46dX2UKGgGR0ByQ7m3fAKwaAdL92gIR0CRDJ+hGpdbdX2UKGgGR0BxHMvh60IDaAdNDQFoCEdAkQzqgVXV9XV9lChoBkdAcAzH446wMmgHTSIBaAhHQJENxRGc4HZ1fZQoaAZHQHJ4JTAFgUloB00RAWgIR0CRDgYJE6T4dX2UKGgGR0BtX0eKbaysaAdNjwFoCEdAkQ4rKzRhMXV9lChoBkdAcCrRdhRZU2gHTRIBaAhHQJEOjO6d1+11fZQoaAZHQFOaykbgjyFoB0vHaAhHQJEPF6t1ZDB1fZQoaAZHQG+XFCswL3NoB01EAWgIR0CREPWBjFyadX2UKGgGR0BwoL29L6DXaAdNJAFoCEdAkRFunAIppnV9lChoBkdAPkgLRa5f+mgHS8toCEdAkRGuokzGgnV9lChoBkdAcKISOzY29GgHTQUBaAhHQJER0+3Ytg91fZQoaAZHQHGDJ9qk/KRoB01WAWgIR0CRFLmZE2HddX2UKGgGR0BPQEIX0oSdaAdLxGgIR0CRFMKQJXyRdX2UKGgGR0BwYPvd/J/5aAdNLgFoCEdAkSflgUlAvHV9lChoBkdAbwMs90RvnGgHTTACaAhHQJEpCf7Jnxt1fZQoaAZHQHEv60UoKD1oB00IAWgIR0CRKaUR3/xUdX2UKGgGR0BwnSM85jpcaAdNSQFoCEdAkSomDQJHAnV9lChoBkdAcJIjslb/wWgHTQ8BaAhHQJEqTymQ8wJ1fZQoaAZHQHKcGDlHSWtoB00jAWgIR0CRKl5Ec81XdX2UKGgGR0BtWiLIgeRxaAdNMwFoCEdAkSsO4kNWl3V9lChoBkdAchsN4Z/CqWgHTVoBaAhHQJErZd2PkrB1fZQoaAZHQHJbd2C/XXloB00GAWgIR0CRK6hX8wYcdX2UKGgGR0BxR2XHBDXwaAdNTAFoCEdAkSxPGlyimHV9lChoBkdAcHastTUAk2gHTRcBaAhHQJEsmp4rz5J1fZQoaAZHQHDZAdKdxyZoB00fAWgIR0CRLKa4tpVTdX2UKGgGR0BwT0f5k9U0aAdNVwFoCEdAkS5oLsrupnV9lChoBkdAcUBUL2HtW2gHTSIBaAhHQJEvCZTho/R1fZQoaAZHQHJnBPO6d2BoB00JAWgIR0CRL51DjR2KdX2UKGgGR0ByGx3OfNA1aAdNlAJoCEdAkS/eDvmYB3V9lChoBkdAcGjEOiFj/mgHTVABaAhHQJEwRUDMeOp1fZQoaAZHQE6lQ40dilVoB0vBaAhHQJEws4o7V8V1fZQoaAZHQHIiL7j1f3NoB00PAWgIR0CRMMCl7+kydX2UKGgGR0BxllG6PKdQaAdNFgFoCEdAkTHLyhBZ6nV9lChoBkdAcJqvjwQUYmgHS/doCEdAkTM2a6STyXV9lChoBkdAcLuSSeRPoGgHTUUBaAhHQJEzXnQpnYh1fZQoaAZHQHGDwYcebNNoB01GAWgIR0CRM3R8MNMHdX2UKGgGR0BxppzNliBoaAdNZAFoCEdAkTOzgl4TsnV9lChoBkdAcXS34sVclmgHTQgBaAhHQJE0BCpm29d1fZQoaAZHQG98rQHAymBoB00lAWgIR0CRNMlTWGypdX2UKGgGR0BKmQy6+WWyaAdLxGgIR0CRNTfLLZBcdX2UKGgGR0BxawNwzch1aAdNdQFoCEdAkTYmv4dp7HV9lChoBkdAc4xVvuPV/mgHTS8BaAhHQJE3Fiz9jwx1fZQoaAZHQG4iQK8cuJ1oB00rAWgIR0CRN6T9sJpndX2UKGgGR0BuUj1M/QjVaAdNBwFoCEdAkTfnHeaa1HV9lChoBkdAU/qXOW0JGGgHS9doCEdAkTmbOzIFNnV9lChoBkdATPv80k4WDmgHS9ZoCEdAkTm9R77bc3V9lChoBkdAceXplBhQWWgHTVEBaAhHQJE502GZeAx1fZQoaAZHQHJfDslb/wRoB009AWgIR0CROh9sabWmdX2UKGgGR0Bvvvggow23aAdNZwFoCEdAkTuIN7SiNHV9lChoBkdAccsiBGx2S2gHS/1oCEdAkTvQYUFjeHV9lChoBkdAcoM2W6bvw2gHTRMBaAhHQJE72W0JF9d1fZQoaAZHQHAlSAc1fmdoB01VAWgIR0CRPCoexOcldX2UKGgGR0ByKqBtk4FSaAdNEAFoCEdAkT2aZYxL03V9lChoBkdAb5fmZmZmZmgHTV4BaAhHQJE/NSzgMtt1fZQoaAZHQHDp978ejmFoB006AWgIR0CRP/9Cu2ZzdX2UKGgGR0BwwWMsH0K7aAdNCAFoCEdAkUCGP91loXV9lChoBkdAbRwsgdOqN2gHS/loCEdAkUENet0V8HV9lChoBkdAcg3Ox0MgEGgHS/VoCEdAkUQwxvegtnV9lChoBkdAcZGUjLSuyWgHTSEBaAhHQJFGHcEeQuF1fZQoaAZHQHHBDL8rI5poB02cAWgIR0CRRlCe2/i6dX2UKGgGR0BwIB69kBjnaAdNLAFoCEdAkUaMwYcebXV9lChoBkdAcK6UDdP+GWgHTRUBaAhHQJFH2kHlfZ51fZQoaAZHQHB6skpqh11oB01RAWgIR0CRR+49X9zfdX2UKGgGR0Bxtg6/7BO6aAdNlQFoCEdAkUgSZ0CA+nV9lChoBkdAcjnueSSvDGgHTQ8BaAhHQJFIRt65Xlt1fZQoaAZHQG/eIWYWtU5oB00xAWgIR0CRSNmWdEsrdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}