File size: 33,086 Bytes
f8b62b4 87b642a 8c27502 87b642a 3160695 87b642a 3160695 87b642a b7ee9c4 87b642a b7ee9c4 87b642a 3160695 87b642a 3160695 87b642a 3160695 87b642a 953f39e 87b642a f8b62b4 87b642a f8b62b4 87b642a 4164fd6 87b642a 4164fd6 871fd36 4164fd6 87b642a 0f43653 87b642a 0f43653 87b642a 4164fd6 87b642a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 |
""" Implementation of BERT, using ALiBi and Flash Attention
The implementation was adopted from
https://github.com/Dao-AILab/flash-attention/blob/43950dda456e095969d842fca7a73c5bfe3cecd0/flash_attn/models/bert.py
and made modifications to use ALiBi.
"""
# Copyright (c) 2022, Tri Dao.
# This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation.
# https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py
# https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py
# Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py
import logging
import re
from collections import OrderedDict
from collections.abc import Sequence
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from transformers import PretrainedConfig
from .configuration_bert import JinaBertConfig
from transformers.models.bert.modeling_bert import (
BaseModelOutputWithPoolingAndCrossAttentions,
BertForPreTrainingOutput,
)
from flash_attn.bert_padding import (
index_first_axis,
index_first_axis_residual,
pad_input,
unpad_input,
)
from flash_attn.modules.block import Block
from flash_attn.modules.embedding import BertEmbeddings
from flash_attn.modules.mha import MHA
from flash_attn.modules.mlp import FusedMLP, Mlp
from flash_attn.utils.pretrained import state_dict_from_pretrained
try:
from flash_attn.ops.fused_dense import FusedDense
except ImportError:
FusedDense = None
try:
from flash_attn.ops.triton.layer_norm import layer_norm_fn
except ImportError:
layer_norm_fn = None
try:
from flash_attn.losses.cross_entropy import CrossEntropyLoss
except ImportError:
CrossEntropyLoss = None
logger = logging.getLogger(__name__)
def create_mixer_cls(config, cross_attn=False, return_residual=False):
fused_bias_fc = getattr(config, "fused_bias_fc", False)
window_size = getattr(config, "window_size", (-1, -1))
mixer_cls = partial(
MHA,
num_heads=config.num_attention_heads,
cross_attn=cross_attn,
dropout=config.attention_probs_dropout_prob,
causal=False,
fused_bias_fc=fused_bias_fc,
use_flash_attn=True,
return_residual=return_residual,
use_alibi=True,
window_size=window_size,
)
return mixer_cls
def create_mlp_cls(config, layer_idx=None, return_residual=False):
inner_dim = config.intermediate_size
fused_mlp = getattr(config, "fused_mlp", False)
if fused_mlp:
assert config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"], (
"fused_mlp only " "supports approximate gelu"
)
if not fused_mlp:
approximate = (
"tanh"
if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"]
else "none"
)
mlp_cls = partial(
Mlp,
hidden_features=inner_dim,
activation=partial(F.gelu, approximate=approximate),
return_residual=return_residual,
)
else:
if FusedMLP is None:
raise ImportError("fused_dense is not installed")
mlp_checkpoint_lvl = getattr(config, "mlp_checkpoint_lvl", 0)
# mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer
if isinstance(mlp_checkpoint_lvl, Sequence):
assert layer_idx is not None
mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx]
mlp_cls = partial(
FusedMLP,
hidden_features=inner_dim,
checkpoint_lvl=mlp_checkpoint_lvl,
return_residual=return_residual,
)
return mlp_cls
def create_block(config, layer_idx=None):
last_layer_subset = getattr(config, "last_layer_subset", False)
cross_attn = last_layer_subset and layer_idx == config.num_hidden_layers - 1
# TD [2022-12-19]: For cross attention (last layer), we actually want to return the
# residual x_kv, not residual x. But it's annoying to change the API (and it only affects
# one layer) so we just choose not to return residual in this case.
return_residual = not cross_attn
mixer_cls = create_mixer_cls(config, cross_attn, return_residual=return_residual)
mlp_cls = create_mlp_cls(config, layer_idx, return_residual=return_residual)
norm_cls = partial(nn.LayerNorm, eps=config.layer_norm_eps)
block = Block(
config.hidden_size,
mixer_cls,
mlp_cls,
norm_cls=norm_cls,
prenorm=False,
resid_dropout1=config.hidden_dropout_prob,
resid_dropout2=config.hidden_dropout_prob,
fused_dropout_add_ln=getattr(config, "fused_dropout_add_ln", False),
return_residual=return_residual,
)
return block
# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
def _init_weights(module, initializer_range=0.02):
if isinstance(module, nn.Linear):
nn.init.normal_(module.weight, std=initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, std=initializer_range)
if module.padding_idx is not None:
nn.init.zeros_(module.weight[module.padding_idx])
class BertEncoder(nn.Module):
def __init__(self, config: JinaBertConfig):
super().__init__()
self.layers = nn.ModuleList(
[create_block(config, layer_idx=i) for i in range(config.num_hidden_layers)]
)
def forward(self, hidden_states, key_padding_mask=None, subset_mask=None):
"""If subset_mask is not None, we only want output for the subset of the sequence.
This means that we only compute the last layer output for these tokens.
subset_mask: (batch, seqlen), dtype=torch.bool
"""
if key_padding_mask is None:
mixer_kwargs = (
{"key_padding_mask": key_padding_mask} if key_padding_mask is not None else None
)
for layer in self.layers:
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
if subset_mask is not None:
hidden_states = hidden_states[subset_mask]
else:
batch, seqlen = hidden_states.shape[:2]
hidden_states, indices, cu_seqlens, max_seqlen_in_batch = unpad_input(
hidden_states, key_padding_mask
)
mixer_kwargs = {"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen_in_batch}
if subset_mask is None:
for layer in self.layers:
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
hidden_states = pad_input(hidden_states, indices, batch, seqlen)
else:
for layer in self.layers[:-1]:
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
if key_padding_mask is not None:
subset_idx = torch.nonzero(
subset_mask[key_padding_mask], as_tuple=False
).flatten()
subset_seqlens = (subset_mask & key_padding_mask).sum(dim=-1, dtype=torch.int32)
subset_cu_seqlens = F.pad(
torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), (1, 0)
)
else:
subset_idx = torch.nonzero(subset_mask, as_tuple=False).flatten()
subset_seqlens = subset_mask.sum(dim=-1, dtype=torch.int32)
subset_cu_seqlens = F.pad(
torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), (1, 0)
)
hidden_states_subset, hidden_states = index_first_axis_residual(
hidden_states, subset_idx
)
# It's ok to set max_seqlen_q to be much larger
mixer_kwargs = {
"x_kv": hidden_states,
"cu_seqlens": subset_cu_seqlens,
"max_seqlen": max_seqlen_in_batch,
"cu_seqlens_k": cu_seqlens,
"max_seqlen_k": max_seqlen_in_batch,
}
hidden_states = self.layers[-1](hidden_states_subset, mixer_kwargs=mixer_kwargs)
return hidden_states
class BertPooler(nn.Module):
def __init__(self, config):
super().__init__()
fused_bias_fc = getattr(config, "fused_bias_fc", False)
if fused_bias_fc and FusedDense is None:
raise ImportError("fused_dense is not installed")
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
self.dense = linear_cls(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states, pool=True):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0] if pool else hidden_states
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class BertPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
fused_bias_fc = getattr(config, "fused_bias_fc", False)
if fused_bias_fc and FusedDense is None:
raise ImportError("fused_dense is not installed")
self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False)
if self.fused_dropout_add_ln and layer_norm_fn is None:
raise ImportError("Triton is not installed")
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
self.dense = linear_cls(config.hidden_size, config.hidden_size)
approximate = (
"tanh"
if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"]
else "none"
)
self.transform_act_fn = nn.GELU(approximate=approximate)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
if not self.fused_dropout_add_ln:
hidden_states = self.layer_norm(hidden_states)
else:
hidden_states = layer_norm_fn(
hidden_states, self.layer_norm.weight, self.layer_norm.bias, eps=self.layer_norm.eps
)
return hidden_states
class BertLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
fused_bias_fc = getattr(config, "fused_bias_fc", False)
if fused_bias_fc and FusedDense is None:
raise ImportError("fused_dense is not installed")
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
self.transform = BertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = linear_cls(config.hidden_size, config.vocab_size, bias=True)
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
class BertPreTrainingHeads(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = BertLMPredictionHead(config)
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, sequence_output, pooled_output):
prediction_scores = self.predictions(sequence_output)
seq_relationship_score = self.seq_relationship(pooled_output)
return prediction_scores, seq_relationship_score
class BertPreTrainedModel(nn.Module):
"""An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
def __init__(self, config, *inputs, **kwargs):
super().__init__()
if not config.__class__.__name__ == 'JinaBertConfig':
raise ValueError(
"Parameter config in `{}(config)` should be an instance of class `JinaBertConfig`.".format(
self.__class__.__name__,
)
)
self.config = config
@classmethod
def from_pretrained(cls, model_name, config, *inputs, **kwargs):
"""
Instantiate a BertPreTrainedModel from a pre-trained model file or a pytorch state dict.
Download and cache the pre-trained model file if needed.
Params:
pretrained_model_name_or_path: either:
- a path or url to a pretrained model archive containing:
. `bert_config.json` a configuration file for the model
. `pytorch_model.bin` a PyTorch dump of a BertForPretraining instance
- a path or url to a pretrained model archive containing:
. `bert_config.json` a configuration file for the model
. `model.chkpt` a TensorFlow checkpoint
*inputs, **kwargs: additional input for the specific Bert class
(ex: num_labels for BertForSequenceClassification)
"""
# Instantiate model.
model = cls(config, *inputs, **kwargs)
load_return = model.load_state_dict(
remap_state_dict(state_dict_from_pretrained(model_name), config), strict=False
)
logger.info(load_return)
return model
@classmethod
def _from_config(cls, config, *inputs, **kwargs):
model = cls(config, *inputs, **kwargs)
return model
class BertModel(BertPreTrainedModel):
def __init__(self, config: JinaBertConfig, add_pooling_layer=True):
super().__init__(config)
self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
if config.vocab_size % self.pad_vocab_size_multiple != 0:
config.vocab_size += self.pad_vocab_size_multiple - (
config.vocab_size % self.pad_vocab_size_multiple
)
self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False)
if self.fused_dropout_add_ln and layer_norm_fn is None:
raise ImportError("Triton is not installed")
assert config.hidden_act in ["gelu", "gelu_new", "gelu_fast", "gelu_pytorch_tanh"]
self.embeddings = BertEmbeddings(
config.hidden_size,
config.vocab_size,
-1, # No position embeddings
config.type_vocab_size,
padding_idx=config.pad_token_id,
)
self.emb_drop = nn.Dropout(config.hidden_dropout_prob)
self.emb_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.encoder = BertEncoder(config)
self.pooler = BertPooler(config) if add_pooling_layer else None
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
def forward(
self,
input_ids,
position_ids=None,
token_type_ids=None,
attention_mask=None,
masked_tokens_mask=None,
):
"""If masked_tokens_mask is not None (i.e. last_layer_subset == True in BertForPreTraining),
we only want the output for the masked tokens. This means that we only compute the last
layer output for these tokens.
masked_tokens_mask: (batch, seqlen), dtype=torch.bool
"""
hidden_states = self.embeddings(
input_ids, position_ids=position_ids, token_type_ids=token_type_ids
)
# TD [2022-12:18]: Don't need to force residual in fp32
# BERT puts embedding LayerNorm before embedding dropout.
if not self.fused_dropout_add_ln:
hidden_states = self.emb_ln(hidden_states)
else:
hidden_states = layer_norm_fn(
hidden_states, self.emb_ln.weight, self.emb_ln.bias, eps=self.emb_ln.eps
)
hidden_states = self.emb_drop(hidden_states)
if masked_tokens_mask is not None:
batch_size, seqlen = input_ids.shape[:2]
# We also need the first column for the CLS token
first_col_mask = torch.zeros(
batch_size, seqlen, dtype=torch.bool, device=input_ids.device
)
first_col_mask[:, 0] = True
subset_mask = masked_tokens_mask | first_col_mask
else:
subset_mask = None
sequence_output = self.encoder(
hidden_states, key_padding_mask=attention_mask, subset_mask=subset_mask
)
if masked_tokens_mask is None:
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
else:
# TD [2022-03-01]: the indexing here is very tricky.
if attention_mask is not None:
subset_idx = subset_mask[attention_mask]
pool_input = sequence_output[first_col_mask[attention_mask][subset_idx]]
sequence_output = sequence_output[masked_tokens_mask[attention_mask][subset_idx]]
else:
pool_input = sequence_output[first_col_mask[subset_mask]]
sequence_output = sequence_output[masked_tokens_mask[subset_mask]]
pooled_output = self.pooler(pool_input, pool=False) if self.pooler is not None else None
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
)
class BertForPreTraining(BertPreTrainedModel):
def __init__(self, config: JinaBertConfig):
super().__init__(config)
# If dense_seq_output, we only need to pass the hidden states for the masked out tokens
# (around 15%) to the classifier heads.
self.dense_seq_output = getattr(config, "dense_seq_output", False)
# If last_layer_subset, we only need the compute the last layer for a subset of tokens
# (e.g., the tokens we need to compute the masked LM loss and the next-sentence prediction).
self.last_layer_subset = getattr(config, "last_layer_subset", False)
if self.last_layer_subset:
assert self.dense_seq_output, "last_layer_subset requires dense_seq_output"
use_xentropy = getattr(config, "use_xentropy", False)
if use_xentropy and CrossEntropyLoss is None:
raise ImportError("xentropy_cuda is not installed")
loss_cls = (
nn.CrossEntropyLoss
if not use_xentropy
else partial(CrossEntropyLoss, inplace_backward=True)
)
self.bert = BertModel(config)
self.cls = BertPreTrainingHeads(config)
self.mlm_loss = loss_cls(ignore_index=0)
self.nsp_loss = loss_cls(ignore_index=-1)
# Initialize weights and apply final processing
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
self.tie_weights()
def tie_weights(self):
self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight
def forward(
self,
input_ids,
position_ids=None,
token_type_ids=None,
attention_mask=None,
labels=None,
next_sentence_label=None,
):
"""
If labels are provided, they must be 0 for masked out tokens (as specified in the attention
mask).
Outputs:
if `labels` and `next_sentence_label` are not `None`:
Outputs the total_loss which is the sum of the masked language modeling loss and the next
sentence classification loss.
if `labels` or `next_sentence_label` is `None`:
Outputs a tuple comprising
- the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
- the next sentence classification logits of shape [batch_size, 2].
"""
masked_tokens_mask = labels > 0 if (self.last_layer_subset and labels is not None) else None
outputs = self.bert(
input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask.bool() if attention_mask is not None else None,
masked_tokens_mask=masked_tokens_mask,
)
sequence_output, pooled_output = outputs.last_hidden_state, outputs.pooler_output
if self.dense_seq_output and labels is not None:
masked_token_idx = torch.nonzero(labels.flatten() > 0, as_tuple=False).flatten()
if not self.last_layer_subset:
sequence_output = index_first_axis(
rearrange(sequence_output, "b s d -> (b s) d"), masked_token_idx
)
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
if (
self.dense_seq_output and labels is not None
): # prediction_scores are already flattened
masked_lm_loss = self.mlm_loss(
prediction_scores, labels.flatten()[masked_token_idx]
).float()
elif labels is not None:
masked_lm_loss = self.mlm_loss(
rearrange(prediction_scores, "... v -> (...) v"),
rearrange(labels, "... -> (...)"),
).float()
else:
masked_lm_loss = 0
if next_sentence_label is not None:
next_sentence_loss = self.nsp_loss(
rearrange(seq_relationship_score, "... t -> (...) t"),
rearrange(next_sentence_label, "... -> (...)"),
).float()
else:
next_sentence_loss = 0
total_loss = masked_lm_loss + next_sentence_loss
return BertForPreTrainingOutput(
loss=total_loss,
prediction_logits=prediction_scores,
seq_relationship_logits=seq_relationship_score,
)
@classmethod
def _from_config(cls, config, **kwargs):
pass
def remap_state_dict(state_dict, config: PretrainedConfig):
"""
Map the state_dict of a Huggingface BERT model to be flash_attn compatible.
"""
# LayerNorm
def key_mapping_ln_gamma_beta(key):
key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key)
key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key)
return key
state_dict = OrderedDict((key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items())
# Layers
def key_mapping_layers(key):
return re.sub(r"^bert.encoder.layer.", "bert.encoder.layers.", key)
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
# LayerNorm
def key_mapping_ln(key):
key = re.sub(r"^bert.embeddings.LayerNorm.", "bert.emb_ln.", key)
key = re.sub(
r"^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)",
r"bert.encoder.layers.\1.norm1.\2",
key,
)
key = re.sub(
r"^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)",
r"bert.encoder.layers.\1.norm2.\2",
key,
)
key = re.sub(
r"^cls.predictions.transform.LayerNorm.(weight|bias)",
r"cls.predictions.transform.layer_norm.\1",
key,
)
return key
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
# MLP
def key_mapping_mlp(key):
key = re.sub(
r"^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)",
r"bert.encoder.layers.\1.mlp.fc1.\2",
key,
)
key = re.sub(
r"^bert.encoder.layers.(\d+).output.dense.(weight|bias)",
r"bert.encoder.layers.\1.mlp.fc2.\2",
key,
)
return key
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
# Attention
last_layer_subset = getattr(config, "last_layer_subset", False)
for d in range(config.num_hidden_layers):
Wq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.weight")
Wk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.weight")
Wv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.weight")
bq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.bias")
bk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.bias")
bv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.bias")
if not (last_layer_subset and d == config.num_hidden_layers - 1):
state_dict[f"bert.encoder.layers.{d}.mixer.Wqkv.weight"] = torch.cat(
[Wq, Wk, Wv], dim=0
)
state_dict[f"bert.encoder.layers.{d}.mixer.Wqkv.bias"] = torch.cat([bq, bk, bv], dim=0)
else:
state_dict[f"bert.encoder.layers.{d}.mixer.Wq.weight"] = Wq
state_dict[f"bert.encoder.layers.{d}.mixer.Wkv.weight"] = torch.cat([Wk, Wv], dim=0)
state_dict[f"bert.encoder.layers.{d}.mixer.Wq.bias"] = bq
state_dict[f"bert.encoder.layers.{d}.mixer.Wkv.bias"] = torch.cat([bk, bv], dim=0)
def key_mapping_attn(key):
return re.sub(
r"^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)",
r"bert.encoder.layers.\1.mixer.out_proj.\2",
key,
)
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
def key_mapping_decoder_bias(key):
return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key)
state_dict = OrderedDict((key_mapping_decoder_bias(k), v) for k, v in state_dict.items())
# Word embedding
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
if pad_vocab_size_multiple > 1:
word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
state_dict["bert.embeddings.word_embeddings.weight"] = F.pad(
word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0])
)
decoder_weight = state_dict["cls.predictions.decoder.weight"]
state_dict["cls.predictions.decoder.weight"] = F.pad(
decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0])
)
# If the vocab was padded, we want to set the decoder bias for those padded indices to be
# strongly negative (i.e. the decoder shouldn't predict those indices).
# TD [2022-05-09]: I don't think it affects the MLPerf training.
decoder_bias = state_dict["cls.predictions.decoder.bias"]
state_dict["cls.predictions.decoder.bias"] = F.pad(
decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0
)
return state_dict
def inv_remap_state_dict(state_dict, config: PretrainedConfig):
"""
Map the state_dict of a flash_attn model to be Huggingface BERT compatible.
This function is meant to be the inverse of remap_state_dict.
"""
# Word embedding
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
if pad_vocab_size_multiple > 1:
word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
decoder_weight = state_dict["cls.predictions.decoder.weight"]
decoder_bias = state_dict["cls.predictions.decoder.bias"]
# unpad embeddings
state_dict["bert.embeddings.word_embeddings.weight"] = word_embeddings[
: config.orig_vocab_size, :
]
state_dict["cls.predictions.decoder.weight"] = decoder_weight[: config.orig_vocab_size, :]
state_dict["cls.predictions.decoder.bias"] = decoder_bias[: config.orig_vocab_size]
for d in range(config.num_hidden_layers):
last_layer_subset = getattr(config, "last_layer_subset", False)
if not last_layer_subset or d != (config.num_hidden_layers - 1):
Wqkv_weights = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wqkv.weight")
Wqkv_biases = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wqkv.bias")
state_dict[f"bert.encoder.layers.{d}.attention.self.query.weight"] = Wqkv_weights[
: Wqkv_weights.shape[0] // 3, :
]
state_dict[f"bert.encoder.layers.{d}.attention.self.key.weight"] = Wqkv_weights[
Wqkv_weights.shape[0] // 3 : 2 * Wqkv_weights.shape[0] // 3, :
]
state_dict[f"bert.encoder.layers.{d}.attention.self.value.weight"] = Wqkv_weights[
2 * Wqkv_weights.shape[0] // 3 :, :
]
state_dict[f"bert.encoder.layers.{d}.attention.self.query.bias"] = Wqkv_biases[
: Wqkv_biases.shape[0] // 3
]
state_dict[f"bert.encoder.layers.{d}.attention.self.key.bias"] = Wqkv_biases[
Wqkv_biases.shape[0] // 3 : 2 * Wqkv_biases.shape[0] // 3
]
state_dict[f"bert.encoder.layers.{d}.attention.self.value.bias"] = Wqkv_biases[
2 * Wqkv_biases.shape[0] // 3 :
]
else:
Wq_weight = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wq.weight")
Wkv_weights = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wkv.weight")
Wq_bias = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wq.bias")
Wkv_biases = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wkv.bias")
state_dict[f"bert.encoder.layers.{d}.attention.self.query.weight"] = Wq_weight
state_dict[f"bert.encoder.layers.{d}.attention.self.key.weight"] = Wkv_weights[
: Wkv_weights.shape[0] // 2, :
]
state_dict[f"bert.encoder.layers.{d}.attention.self.value.weight"] = Wkv_weights[
Wkv_weights.shape[0] // 2 :, :
]
state_dict[f"bert.encoder.layers.{d}.attention.self.query.bias"] = Wq_bias
state_dict[f"bert.encoder.layers.{d}.attention.self.key.bias"] = Wkv_biases[
: Wkv_biases.shape[0] // 2
]
state_dict[f"bert.encoder.layers.{d}.attention.self.value.bias"] = Wkv_biases[
Wkv_biases.shape[0] // 2 :
]
def inv_key_mapping_ln(key):
key = re.sub(r"bert.emb_ln.", "bert.embeddings.LayerNorm.", key)
key = re.sub(
r"bert.encoder.layers.(\d+).norm1.(weight|bias)",
r"bert.encoder.layers.\1.attention.output.LayerNorm.\2",
key,
)
key = re.sub(
r"bert.encoder.layers.(\d+).norm2.(weight|bias)",
r"bert.encoder.layers.\1.output.LayerNorm.\2",
key,
)
key = re.sub(
r"cls.predictions.transform.layer_norm.(weight|bias)",
r"cls.predictions.transform.LayerNorm.\1",
key,
)
return key
def inv_key_mapping_ln_gamma_beta(key):
key = re.sub(r"LayerNorm.weight$", "LayerNorm.gamma", key)
key = re.sub(r"LayerNorm.bias$", "LayerNorm.beta", key)
return key
def inv_key_mapping_layers(key):
return re.sub(r"bert.encoder.layers.", "bert.encoder.layer.", key)
def inv_key_mapping_mlp(key):
key = re.sub(
r"bert.encoder.layer.(\d+).mlp.fc1.(weight|bias)",
r"bert.encoder.layer.\1.intermediate.dense.\2",
key,
)
key = re.sub(
r"bert.encoder.layer.(\d+).mlp.fc2.(weight|bias)",
r"bert.encoder.layer.\1.output.dense.\2",
key,
)
return key
def inv_key_mapping_attn(key):
return re.sub(
r"bert.encoder.layer.(\d+).mixer.out_proj.(weight|bias)",
r"bert.encoder.layer.\1.attention.output.dense.\2",
key,
)
def inv_key_mapping_decoder_bias(key):
return re.sub(r"cls.predictions.decoder.bias", "cls.predictions.bias", key)
state_dict = OrderedDict((inv_key_mapping_ln(key), value) for key, value in state_dict.items())
state_dict = OrderedDict(
(inv_key_mapping_ln_gamma_beta(key), value) for key, value in state_dict.items()
)
state_dict = OrderedDict(
(inv_key_mapping_layers(key), value) for key, value in state_dict.items()
)
state_dict = OrderedDict((inv_key_mapping_mlp(key), value) for key, value in state_dict.items())
state_dict = OrderedDict(
(inv_key_mapping_attn(key), value) for key, value in state_dict.items()
)
state_dict = OrderedDict(
(inv_key_mapping_decoder_bias(key), value) for key, value in state_dict.items()
)
return state_dict |