jina-bert-flash-implementation / modeling_bert.py
Markus28's picture
Fixed typo
6fb6577
raw
history blame
21.1 kB
""" Implementation of BERT, using ALiBi and Flash Attention
The implementation was adopted from
https://github.com/Dao-AILab/flash-attention/blob/43950dda456e095969d842fca7a73c5bfe3cecd0/flash_attn/models/bert.py
and made modifications to use ALiBi.
"""
# Copyright (c) 2022, Tri Dao.
# This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation.
# https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py
# https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py
# Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py
import logging
import re
from collections import OrderedDict
from collections.abc import Sequence
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from transformers.modeling_utils import PreTrainedModel
from .configuration_bert import JinaBertConfig
from transformers.models.bert.modeling_bert import (
BaseModelOutputWithPoolingAndCrossAttentions,
BertForPreTrainingOutput,
)
from flash_attn.bert_padding import (
index_first_axis,
index_first_axis_residual,
pad_input,
unpad_input,
)
from flash_attn.modules.block import Block
from flash_attn.modules.embedding import BertEmbeddings
from flash_attn.modules.mha import MHA
from flash_attn.modules.mlp import FusedMLP, Mlp
try:
from flash_attn.ops.fused_dense import FusedDense
except ImportError:
FusedDense = None
try:
from flash_attn.ops.triton.layer_norm import layer_norm_fn
except ImportError:
layer_norm_fn = None
try:
from flash_attn.losses.cross_entropy import CrossEntropyLoss
except ImportError:
CrossEntropyLoss = None
logger = logging.getLogger(__name__)
def create_mixer_cls(config, cross_attn=False, return_residual=False):
fused_bias_fc = getattr(config, "fused_bias_fc", False)
window_size = getattr(config, "window_size", (-1, -1))
mixer_cls = partial(
MHA,
num_heads=config.num_attention_heads,
cross_attn=cross_attn,
dropout=config.attention_probs_dropout_prob,
causal=False,
fused_bias_fc=fused_bias_fc,
use_flash_attn=True,
return_residual=return_residual,
use_alibi=True,
window_size=window_size,
)
return mixer_cls
def create_mlp_cls(config, layer_idx=None, return_residual=False):
inner_dim = config.intermediate_size
fused_mlp = getattr(config, "fused_mlp", False)
if fused_mlp:
assert config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"], (
"fused_mlp only " "supports approximate gelu"
)
if not fused_mlp:
approximate = (
"tanh"
if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"]
else "none"
)
mlp_cls = partial(
Mlp,
hidden_features=inner_dim,
activation=partial(F.gelu, approximate=approximate),
return_residual=return_residual,
)
else:
if FusedMLP is None:
raise ImportError("fused_dense is not installed")
mlp_checkpoint_lvl = getattr(config, "mlp_checkpoint_lvl", 0)
# mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer
if isinstance(mlp_checkpoint_lvl, Sequence):
assert layer_idx is not None
mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx]
mlp_cls = partial(
FusedMLP,
hidden_features=inner_dim,
checkpoint_lvl=mlp_checkpoint_lvl,
return_residual=return_residual,
)
return mlp_cls
def create_block(config, layer_idx=None):
last_layer_subset = getattr(config, "last_layer_subset", False)
cross_attn = last_layer_subset and layer_idx == config.num_hidden_layers - 1
# TD [2022-12-19]: For cross attention (last layer), we actually want to return the
# residual x_kv, not residual x. But it's annoying to change the API (and it only affects
# one layer) so we just choose not to return residual in this case.
return_residual = not cross_attn
mixer_cls = create_mixer_cls(config, cross_attn, return_residual=return_residual)
mlp_cls = create_mlp_cls(config, layer_idx, return_residual=return_residual)
norm_cls = partial(nn.LayerNorm, eps=config.layer_norm_eps)
block = Block(
config.hidden_size,
mixer_cls,
mlp_cls,
norm_cls=norm_cls,
prenorm=False,
resid_dropout1=config.hidden_dropout_prob,
resid_dropout2=config.hidden_dropout_prob,
fused_dropout_add_ln=getattr(config, "fused_dropout_add_ln", False),
return_residual=return_residual,
)
return block
# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
def _init_weights(module, initializer_range=0.02):
if isinstance(module, nn.Linear):
nn.init.normal_(module.weight, std=initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, std=initializer_range)
if module.padding_idx is not None:
nn.init.zeros_(module.weight[module.padding_idx])
class BertEncoder(nn.Module):
def __init__(self, config: JinaBertConfig):
super().__init__()
self.layers = nn.ModuleList(
[create_block(config, layer_idx=i) for i in range(config.num_hidden_layers)]
)
def forward(self, hidden_states, key_padding_mask=None, subset_mask=None):
"""If subset_mask is not None, we only want output for the subset of the sequence.
This means that we only compute the last layer output for these tokens.
subset_mask: (batch, seqlen), dtype=torch.bool
"""
if key_padding_mask is None:
mixer_kwargs = (
{"key_padding_mask": key_padding_mask} if key_padding_mask is not None else None
)
for layer in self.layers:
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
if subset_mask is not None:
hidden_states = hidden_states[subset_mask]
else:
batch, seqlen = hidden_states.shape[:2]
hidden_states, indices, cu_seqlens, max_seqlen_in_batch = unpad_input(
hidden_states, key_padding_mask
)
mixer_kwargs = {"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen_in_batch}
if subset_mask is None:
for layer in self.layers:
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
hidden_states = pad_input(hidden_states, indices, batch, seqlen)
else:
for layer in self.layers[:-1]:
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
if key_padding_mask is not None:
subset_idx = torch.nonzero(
subset_mask[key_padding_mask], as_tuple=False
).flatten()
subset_seqlens = (subset_mask & key_padding_mask).sum(dim=-1, dtype=torch.int32)
subset_cu_seqlens = F.pad(
torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), (1, 0)
)
else:
subset_idx = torch.nonzero(subset_mask, as_tuple=False).flatten()
subset_seqlens = subset_mask.sum(dim=-1, dtype=torch.int32)
subset_cu_seqlens = F.pad(
torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), (1, 0)
)
hidden_states_subset, hidden_states = index_first_axis_residual(
hidden_states, subset_idx
)
# It's ok to set max_seqlen_q to be much larger
mixer_kwargs = {
"x_kv": hidden_states,
"cu_seqlens": subset_cu_seqlens,
"max_seqlen": max_seqlen_in_batch,
"cu_seqlens_k": cu_seqlens,
"max_seqlen_k": max_seqlen_in_batch,
}
hidden_states = self.layers[-1](hidden_states_subset, mixer_kwargs=mixer_kwargs)
return hidden_states
class BertPooler(nn.Module):
def __init__(self, config):
super().__init__()
fused_bias_fc = getattr(config, "fused_bias_fc", False)
if fused_bias_fc and FusedDense is None:
raise ImportError("fused_dense is not installed")
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
self.dense = linear_cls(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states, pool=True):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0] if pool else hidden_states
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class BertPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
fused_bias_fc = getattr(config, "fused_bias_fc", False)
if fused_bias_fc and FusedDense is None:
raise ImportError("fused_dense is not installed")
self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False)
if self.fused_dropout_add_ln and layer_norm_fn is None:
raise ImportError("Triton is not installed")
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
self.dense = linear_cls(config.hidden_size, config.hidden_size)
approximate = (
"tanh"
if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"]
else "none"
)
self.transform_act_fn = nn.GELU(approximate=approximate)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
if not self.fused_dropout_add_ln:
hidden_states = self.layer_norm(hidden_states)
else:
hidden_states = layer_norm_fn(
hidden_states, self.layer_norm.weight, self.layer_norm.bias, eps=self.layer_norm.eps
)
return hidden_states
class BertLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
fused_bias_fc = getattr(config, "fused_bias_fc", False)
if fused_bias_fc and FusedDense is None:
raise ImportError("fused_dense is not installed")
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
self.transform = BertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = linear_cls(config.hidden_size, config.vocab_size, bias=True)
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
class BertPreTrainingHeads(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = BertLMPredictionHead(config)
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, sequence_output, pooled_output):
prediction_scores = self.predictions(sequence_output)
seq_relationship_score = self.seq_relationship(pooled_output)
return prediction_scores, seq_relationship_score
class BertPreTrainedModel(PretrainedModel):
"""An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
def __init__(self, config, *inputs, **kwargs):
super().__init__()
if not config.__class__.__name__ == 'JinaBertConfig':
raise ValueError(
"Parameter config in `{}(config)` should be an instance of class `JinaBertConfig`.".format(
self.__class__.__name__,
)
)
self.config = config
class BertModel(BertPreTrainedModel):
def __init__(self, config: JinaBertConfig, add_pooling_layer=True):
super().__init__(config)
self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
if config.vocab_size % self.pad_vocab_size_multiple != 0:
config.vocab_size += self.pad_vocab_size_multiple - (
config.vocab_size % self.pad_vocab_size_multiple
)
self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False)
if self.fused_dropout_add_ln and layer_norm_fn is None:
raise ImportError("Triton is not installed")
assert config.hidden_act in ["gelu", "gelu_new", "gelu_fast", "gelu_pytorch_tanh"]
self.embeddings = BertEmbeddings(
config.hidden_size,
config.vocab_size,
-1, # No position embeddings
config.type_vocab_size,
padding_idx=config.pad_token_id,
)
self.emb_drop = nn.Dropout(config.hidden_dropout_prob)
self.emb_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.encoder = BertEncoder(config)
self.pooler = BertPooler(config) if add_pooling_layer else None
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
def forward(
self,
input_ids,
position_ids=None,
token_type_ids=None,
attention_mask=None,
masked_tokens_mask=None,
):
"""If masked_tokens_mask is not None (i.e. last_layer_subset == True in BertForPreTraining),
we only want the output for the masked tokens. This means that we only compute the last
layer output for these tokens.
masked_tokens_mask: (batch, seqlen), dtype=torch.bool
"""
hidden_states = self.embeddings(
input_ids, position_ids=position_ids, token_type_ids=token_type_ids
)
# TD [2022-12:18]: Don't need to force residual in fp32
# BERT puts embedding LayerNorm before embedding dropout.
if not self.fused_dropout_add_ln:
hidden_states = self.emb_ln(hidden_states)
else:
hidden_states = layer_norm_fn(
hidden_states, self.emb_ln.weight, self.emb_ln.bias, eps=self.emb_ln.eps
)
hidden_states = self.emb_drop(hidden_states)
if masked_tokens_mask is not None:
batch_size, seqlen = input_ids.shape[:2]
# We also need the first column for the CLS token
first_col_mask = torch.zeros(
batch_size, seqlen, dtype=torch.bool, device=input_ids.device
)
first_col_mask[:, 0] = True
subset_mask = masked_tokens_mask | first_col_mask
else:
subset_mask = None
sequence_output = self.encoder(
hidden_states, key_padding_mask=attention_mask, subset_mask=subset_mask
)
if masked_tokens_mask is None:
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
else:
# TD [2022-03-01]: the indexing here is very tricky.
if attention_mask is not None:
subset_idx = subset_mask[attention_mask]
pool_input = sequence_output[first_col_mask[attention_mask][subset_idx]]
sequence_output = sequence_output[masked_tokens_mask[attention_mask][subset_idx]]
else:
pool_input = sequence_output[first_col_mask[subset_mask]]
sequence_output = sequence_output[masked_tokens_mask[subset_mask]]
pooled_output = self.pooler(pool_input, pool=False) if self.pooler is not None else None
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
)
class BertForPreTraining(BertPreTrainedModel):
def __init__(self, config: JinaBertConfig):
super().__init__(config)
# If dense_seq_output, we only need to pass the hidden states for the masked out tokens
# (around 15%) to the classifier heads.
self.dense_seq_output = getattr(config, "dense_seq_output", False)
# If last_layer_subset, we only need the compute the last layer for a subset of tokens
# (e.g., the tokens we need to compute the masked LM loss and the next-sentence prediction).
self.last_layer_subset = getattr(config, "last_layer_subset", False)
if self.last_layer_subset:
assert self.dense_seq_output, "last_layer_subset requires dense_seq_output"
use_xentropy = getattr(config, "use_xentropy", False)
if use_xentropy and CrossEntropyLoss is None:
raise ImportError("xentropy_cuda is not installed")
loss_cls = (
nn.CrossEntropyLoss
if not use_xentropy
else partial(CrossEntropyLoss, inplace_backward=True)
)
self.bert = BertModel(config)
self.cls = BertPreTrainingHeads(config)
self.mlm_loss = loss_cls(ignore_index=0)
self.nsp_loss = loss_cls(ignore_index=-1)
# Initialize weights and apply final processing
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
self.tie_weights()
def tie_weights(self):
self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight
def get_input_embeddings(self):
return self.bert.embeddings.word_embeddings
def forward(
self,
input_ids,
position_ids=None,
token_type_ids=None,
attention_mask=None,
labels=None,
next_sentence_label=None,
):
"""
If labels are provided, they must be 0 for masked out tokens (as specified in the attention
mask).
Outputs:
if `labels` and `next_sentence_label` are not `None`:
Outputs the total_loss which is the sum of the masked language modeling loss and the next
sentence classification loss.
if `labels` or `next_sentence_label` is `None`:
Outputs a tuple comprising
- the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
- the next sentence classification logits of shape [batch_size, 2].
"""
masked_tokens_mask = labels > 0 if (self.last_layer_subset and labels is not None) else None
outputs = self.bert(
input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask.bool() if attention_mask is not None else None,
masked_tokens_mask=masked_tokens_mask,
)
sequence_output, pooled_output = outputs.last_hidden_state, outputs.pooler_output
if self.dense_seq_output and labels is not None:
masked_token_idx = torch.nonzero(labels.flatten() > 0, as_tuple=False).flatten()
if not self.last_layer_subset:
sequence_output = index_first_axis(
rearrange(sequence_output, "b s d -> (b s) d"), masked_token_idx
)
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
if (
self.dense_seq_output and labels is not None
): # prediction_scores are already flattened
masked_lm_loss = self.mlm_loss(
prediction_scores, labels.flatten()[masked_token_idx]
).float()
elif labels is not None:
masked_lm_loss = self.mlm_loss(
rearrange(prediction_scores, "... v -> (...) v"),
rearrange(labels, "... -> (...)"),
).float()
else:
masked_lm_loss = 0
if next_sentence_label is not None:
next_sentence_loss = self.nsp_loss(
rearrange(seq_relationship_score, "... t -> (...) t"),
rearrange(next_sentence_label, "... -> (...)"),
).float()
else:
next_sentence_loss = 0
total_loss = masked_lm_loss + next_sentence_loss
return BertForPreTrainingOutput(
loss=total_loss,
prediction_logits=prediction_scores,
seq_relationship_logits=seq_relationship_score,
)