|
""" Implementation of BERT, using ALiBi and Flash Attention |
|
|
|
The implementation was adopted from |
|
https://github.com/Dao-AILab/flash-attention/blob/43950dda456e095969d842fca7a73c5bfe3cecd0/flash_attn/models/bert.py |
|
and made modifications to use ALiBi. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import re |
|
from collections import OrderedDict |
|
from collections.abc import Sequence |
|
from functools import partial |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
from transformers.modeling_utils import PretrainedModel |
|
from .configuration_bert import JinaBertConfig |
|
from transformers.models.bert.modeling_bert import ( |
|
BaseModelOutputWithPoolingAndCrossAttentions, |
|
BertForPreTrainingOutput, |
|
) |
|
from flash_attn.bert_padding import ( |
|
index_first_axis, |
|
index_first_axis_residual, |
|
pad_input, |
|
unpad_input, |
|
) |
|
|
|
from flash_attn.modules.block import Block |
|
from flash_attn.modules.embedding import BertEmbeddings |
|
from flash_attn.modules.mha import MHA |
|
from flash_attn.modules.mlp import FusedMLP, Mlp |
|
|
|
try: |
|
from flash_attn.ops.fused_dense import FusedDense |
|
except ImportError: |
|
FusedDense = None |
|
|
|
try: |
|
from flash_attn.ops.triton.layer_norm import layer_norm_fn |
|
except ImportError: |
|
layer_norm_fn = None |
|
|
|
|
|
try: |
|
from flash_attn.losses.cross_entropy import CrossEntropyLoss |
|
except ImportError: |
|
CrossEntropyLoss = None |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def create_mixer_cls(config, cross_attn=False, return_residual=False): |
|
fused_bias_fc = getattr(config, "fused_bias_fc", False) |
|
window_size = getattr(config, "window_size", (-1, -1)) |
|
mixer_cls = partial( |
|
MHA, |
|
num_heads=config.num_attention_heads, |
|
cross_attn=cross_attn, |
|
dropout=config.attention_probs_dropout_prob, |
|
causal=False, |
|
fused_bias_fc=fused_bias_fc, |
|
use_flash_attn=True, |
|
return_residual=return_residual, |
|
use_alibi=True, |
|
window_size=window_size, |
|
) |
|
return mixer_cls |
|
|
|
|
|
def create_mlp_cls(config, layer_idx=None, return_residual=False): |
|
inner_dim = config.intermediate_size |
|
fused_mlp = getattr(config, "fused_mlp", False) |
|
if fused_mlp: |
|
assert config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"], ( |
|
"fused_mlp only " "supports approximate gelu" |
|
) |
|
if not fused_mlp: |
|
approximate = ( |
|
"tanh" |
|
if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] |
|
else "none" |
|
) |
|
mlp_cls = partial( |
|
Mlp, |
|
hidden_features=inner_dim, |
|
activation=partial(F.gelu, approximate=approximate), |
|
return_residual=return_residual, |
|
) |
|
else: |
|
if FusedMLP is None: |
|
raise ImportError("fused_dense is not installed") |
|
mlp_checkpoint_lvl = getattr(config, "mlp_checkpoint_lvl", 0) |
|
|
|
if isinstance(mlp_checkpoint_lvl, Sequence): |
|
assert layer_idx is not None |
|
mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx] |
|
mlp_cls = partial( |
|
FusedMLP, |
|
hidden_features=inner_dim, |
|
checkpoint_lvl=mlp_checkpoint_lvl, |
|
return_residual=return_residual, |
|
) |
|
return mlp_cls |
|
|
|
|
|
def create_block(config, layer_idx=None): |
|
last_layer_subset = getattr(config, "last_layer_subset", False) |
|
cross_attn = last_layer_subset and layer_idx == config.num_hidden_layers - 1 |
|
|
|
|
|
|
|
return_residual = not cross_attn |
|
mixer_cls = create_mixer_cls(config, cross_attn, return_residual=return_residual) |
|
mlp_cls = create_mlp_cls(config, layer_idx, return_residual=return_residual) |
|
norm_cls = partial(nn.LayerNorm, eps=config.layer_norm_eps) |
|
block = Block( |
|
config.hidden_size, |
|
mixer_cls, |
|
mlp_cls, |
|
norm_cls=norm_cls, |
|
prenorm=False, |
|
resid_dropout1=config.hidden_dropout_prob, |
|
resid_dropout2=config.hidden_dropout_prob, |
|
fused_dropout_add_ln=getattr(config, "fused_dropout_add_ln", False), |
|
return_residual=return_residual, |
|
) |
|
return block |
|
|
|
|
|
|
|
def _init_weights(module, initializer_range=0.02): |
|
if isinstance(module, nn.Linear): |
|
nn.init.normal_(module.weight, std=initializer_range) |
|
if module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Embedding): |
|
nn.init.normal_(module.weight, std=initializer_range) |
|
if module.padding_idx is not None: |
|
nn.init.zeros_(module.weight[module.padding_idx]) |
|
|
|
|
|
class BertEncoder(nn.Module): |
|
def __init__(self, config: JinaBertConfig): |
|
super().__init__() |
|
self.layers = nn.ModuleList( |
|
[create_block(config, layer_idx=i) for i in range(config.num_hidden_layers)] |
|
) |
|
|
|
def forward(self, hidden_states, key_padding_mask=None, subset_mask=None): |
|
"""If subset_mask is not None, we only want output for the subset of the sequence. |
|
This means that we only compute the last layer output for these tokens. |
|
subset_mask: (batch, seqlen), dtype=torch.bool |
|
""" |
|
if key_padding_mask is None: |
|
mixer_kwargs = ( |
|
{"key_padding_mask": key_padding_mask} if key_padding_mask is not None else None |
|
) |
|
for layer in self.layers: |
|
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs) |
|
if subset_mask is not None: |
|
hidden_states = hidden_states[subset_mask] |
|
else: |
|
batch, seqlen = hidden_states.shape[:2] |
|
hidden_states, indices, cu_seqlens, max_seqlen_in_batch = unpad_input( |
|
hidden_states, key_padding_mask |
|
) |
|
mixer_kwargs = {"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen_in_batch} |
|
if subset_mask is None: |
|
for layer in self.layers: |
|
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs) |
|
hidden_states = pad_input(hidden_states, indices, batch, seqlen) |
|
else: |
|
for layer in self.layers[:-1]: |
|
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs) |
|
if key_padding_mask is not None: |
|
subset_idx = torch.nonzero( |
|
subset_mask[key_padding_mask], as_tuple=False |
|
).flatten() |
|
subset_seqlens = (subset_mask & key_padding_mask).sum(dim=-1, dtype=torch.int32) |
|
subset_cu_seqlens = F.pad( |
|
torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), (1, 0) |
|
) |
|
else: |
|
subset_idx = torch.nonzero(subset_mask, as_tuple=False).flatten() |
|
subset_seqlens = subset_mask.sum(dim=-1, dtype=torch.int32) |
|
subset_cu_seqlens = F.pad( |
|
torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), (1, 0) |
|
) |
|
hidden_states_subset, hidden_states = index_first_axis_residual( |
|
hidden_states, subset_idx |
|
) |
|
|
|
mixer_kwargs = { |
|
"x_kv": hidden_states, |
|
"cu_seqlens": subset_cu_seqlens, |
|
"max_seqlen": max_seqlen_in_batch, |
|
"cu_seqlens_k": cu_seqlens, |
|
"max_seqlen_k": max_seqlen_in_batch, |
|
} |
|
hidden_states = self.layers[-1](hidden_states_subset, mixer_kwargs=mixer_kwargs) |
|
return hidden_states |
|
|
|
|
|
class BertPooler(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
fused_bias_fc = getattr(config, "fused_bias_fc", False) |
|
if fused_bias_fc and FusedDense is None: |
|
raise ImportError("fused_dense is not installed") |
|
linear_cls = nn.Linear if not fused_bias_fc else FusedDense |
|
self.dense = linear_cls(config.hidden_size, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
|
|
def forward(self, hidden_states, pool=True): |
|
|
|
|
|
first_token_tensor = hidden_states[:, 0] if pool else hidden_states |
|
pooled_output = self.dense(first_token_tensor) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |
|
|
|
|
|
class BertPredictionHeadTransform(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
fused_bias_fc = getattr(config, "fused_bias_fc", False) |
|
if fused_bias_fc and FusedDense is None: |
|
raise ImportError("fused_dense is not installed") |
|
self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False) |
|
if self.fused_dropout_add_ln and layer_norm_fn is None: |
|
raise ImportError("Triton is not installed") |
|
linear_cls = nn.Linear if not fused_bias_fc else FusedDense |
|
self.dense = linear_cls(config.hidden_size, config.hidden_size) |
|
approximate = ( |
|
"tanh" |
|
if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] |
|
else "none" |
|
) |
|
self.transform_act_fn = nn.GELU(approximate=approximate) |
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.transform_act_fn(hidden_states) |
|
if not self.fused_dropout_add_ln: |
|
hidden_states = self.layer_norm(hidden_states) |
|
else: |
|
hidden_states = layer_norm_fn( |
|
hidden_states, self.layer_norm.weight, self.layer_norm.bias, eps=self.layer_norm.eps |
|
) |
|
return hidden_states |
|
|
|
|
|
class BertLMPredictionHead(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
fused_bias_fc = getattr(config, "fused_bias_fc", False) |
|
if fused_bias_fc and FusedDense is None: |
|
raise ImportError("fused_dense is not installed") |
|
linear_cls = nn.Linear if not fused_bias_fc else FusedDense |
|
|
|
self.transform = BertPredictionHeadTransform(config) |
|
|
|
|
|
|
|
self.decoder = linear_cls(config.hidden_size, config.vocab_size, bias=True) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.transform(hidden_states) |
|
hidden_states = self.decoder(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class BertPreTrainingHeads(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.predictions = BertLMPredictionHead(config) |
|
self.seq_relationship = nn.Linear(config.hidden_size, 2) |
|
|
|
def forward(self, sequence_output, pooled_output): |
|
prediction_scores = self.predictions(sequence_output) |
|
seq_relationship_score = self.seq_relationship(pooled_output) |
|
return prediction_scores, seq_relationship_score |
|
|
|
|
|
class BertPreTrainedModel(PretrainedModel): |
|
"""An abstract class to handle weights initialization and |
|
a simple interface for dowloading and loading pretrained models. |
|
""" |
|
|
|
def __init__(self, config, *inputs, **kwargs): |
|
super().__init__() |
|
if not config.__class__.__name__ == 'JinaBertConfig': |
|
raise ValueError( |
|
"Parameter config in `{}(config)` should be an instance of class `JinaBertConfig`.".format( |
|
self.__class__.__name__, |
|
) |
|
) |
|
self.config = config |
|
|
|
|
|
class BertModel(BertPreTrainedModel): |
|
def __init__(self, config: JinaBertConfig, add_pooling_layer=True): |
|
super().__init__(config) |
|
self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) |
|
if config.vocab_size % self.pad_vocab_size_multiple != 0: |
|
config.vocab_size += self.pad_vocab_size_multiple - ( |
|
config.vocab_size % self.pad_vocab_size_multiple |
|
) |
|
self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False) |
|
if self.fused_dropout_add_ln and layer_norm_fn is None: |
|
raise ImportError("Triton is not installed") |
|
assert config.hidden_act in ["gelu", "gelu_new", "gelu_fast", "gelu_pytorch_tanh"] |
|
|
|
self.embeddings = BertEmbeddings( |
|
config.hidden_size, |
|
config.vocab_size, |
|
-1, |
|
config.type_vocab_size, |
|
padding_idx=config.pad_token_id, |
|
) |
|
self.emb_drop = nn.Dropout(config.hidden_dropout_prob) |
|
self.emb_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.encoder = BertEncoder(config) |
|
self.pooler = BertPooler(config) if add_pooling_layer else None |
|
|
|
self.apply(partial(_init_weights, initializer_range=config.initializer_range)) |
|
|
|
def forward( |
|
self, |
|
input_ids, |
|
position_ids=None, |
|
token_type_ids=None, |
|
attention_mask=None, |
|
masked_tokens_mask=None, |
|
): |
|
"""If masked_tokens_mask is not None (i.e. last_layer_subset == True in BertForPreTraining), |
|
we only want the output for the masked tokens. This means that we only compute the last |
|
layer output for these tokens. |
|
masked_tokens_mask: (batch, seqlen), dtype=torch.bool |
|
""" |
|
hidden_states = self.embeddings( |
|
input_ids, position_ids=position_ids, token_type_ids=token_type_ids |
|
) |
|
|
|
|
|
if not self.fused_dropout_add_ln: |
|
hidden_states = self.emb_ln(hidden_states) |
|
else: |
|
hidden_states = layer_norm_fn( |
|
hidden_states, self.emb_ln.weight, self.emb_ln.bias, eps=self.emb_ln.eps |
|
) |
|
hidden_states = self.emb_drop(hidden_states) |
|
|
|
if masked_tokens_mask is not None: |
|
batch_size, seqlen = input_ids.shape[:2] |
|
|
|
first_col_mask = torch.zeros( |
|
batch_size, seqlen, dtype=torch.bool, device=input_ids.device |
|
) |
|
first_col_mask[:, 0] = True |
|
subset_mask = masked_tokens_mask | first_col_mask |
|
else: |
|
subset_mask = None |
|
|
|
sequence_output = self.encoder( |
|
hidden_states, key_padding_mask=attention_mask, subset_mask=subset_mask |
|
) |
|
|
|
if masked_tokens_mask is None: |
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None |
|
else: |
|
|
|
if attention_mask is not None: |
|
subset_idx = subset_mask[attention_mask] |
|
pool_input = sequence_output[first_col_mask[attention_mask][subset_idx]] |
|
sequence_output = sequence_output[masked_tokens_mask[attention_mask][subset_idx]] |
|
else: |
|
pool_input = sequence_output[first_col_mask[subset_mask]] |
|
sequence_output = sequence_output[masked_tokens_mask[subset_mask]] |
|
pooled_output = self.pooler(pool_input, pool=False) if self.pooler is not None else None |
|
|
|
return BaseModelOutputWithPoolingAndCrossAttentions( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
) |
|
|
|
|
|
class BertForPreTraining(BertPreTrainedModel): |
|
def __init__(self, config: JinaBertConfig): |
|
super().__init__(config) |
|
|
|
|
|
self.dense_seq_output = getattr(config, "dense_seq_output", False) |
|
|
|
|
|
self.last_layer_subset = getattr(config, "last_layer_subset", False) |
|
if self.last_layer_subset: |
|
assert self.dense_seq_output, "last_layer_subset requires dense_seq_output" |
|
use_xentropy = getattr(config, "use_xentropy", False) |
|
if use_xentropy and CrossEntropyLoss is None: |
|
raise ImportError("xentropy_cuda is not installed") |
|
loss_cls = ( |
|
nn.CrossEntropyLoss |
|
if not use_xentropy |
|
else partial(CrossEntropyLoss, inplace_backward=True) |
|
) |
|
|
|
self.bert = BertModel(config) |
|
self.cls = BertPreTrainingHeads(config) |
|
self.mlm_loss = loss_cls(ignore_index=0) |
|
self.nsp_loss = loss_cls(ignore_index=-1) |
|
|
|
|
|
self.apply(partial(_init_weights, initializer_range=config.initializer_range)) |
|
self.tie_weights() |
|
|
|
def tie_weights(self): |
|
self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight |
|
|
|
def get_input_embeddings(self): |
|
return self.bert.embeddings.word_embeddings |
|
|
|
def forward( |
|
self, |
|
input_ids, |
|
position_ids=None, |
|
token_type_ids=None, |
|
attention_mask=None, |
|
labels=None, |
|
next_sentence_label=None, |
|
): |
|
""" |
|
If labels are provided, they must be 0 for masked out tokens (as specified in the attention |
|
mask). |
|
Outputs: |
|
if `labels` and `next_sentence_label` are not `None`: |
|
Outputs the total_loss which is the sum of the masked language modeling loss and the next |
|
sentence classification loss. |
|
if `labels` or `next_sentence_label` is `None`: |
|
Outputs a tuple comprising |
|
- the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and |
|
- the next sentence classification logits of shape [batch_size, 2]. |
|
|
|
""" |
|
masked_tokens_mask = labels > 0 if (self.last_layer_subset and labels is not None) else None |
|
outputs = self.bert( |
|
input_ids, |
|
position_ids=position_ids, |
|
token_type_ids=token_type_ids, |
|
attention_mask=attention_mask.bool() if attention_mask is not None else None, |
|
masked_tokens_mask=masked_tokens_mask, |
|
) |
|
sequence_output, pooled_output = outputs.last_hidden_state, outputs.pooler_output |
|
if self.dense_seq_output and labels is not None: |
|
masked_token_idx = torch.nonzero(labels.flatten() > 0, as_tuple=False).flatten() |
|
if not self.last_layer_subset: |
|
sequence_output = index_first_axis( |
|
rearrange(sequence_output, "b s d -> (b s) d"), masked_token_idx |
|
) |
|
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) |
|
|
|
if ( |
|
self.dense_seq_output and labels is not None |
|
): |
|
masked_lm_loss = self.mlm_loss( |
|
prediction_scores, labels.flatten()[masked_token_idx] |
|
).float() |
|
elif labels is not None: |
|
masked_lm_loss = self.mlm_loss( |
|
rearrange(prediction_scores, "... v -> (...) v"), |
|
rearrange(labels, "... -> (...)"), |
|
).float() |
|
else: |
|
masked_lm_loss = 0 |
|
if next_sentence_label is not None: |
|
next_sentence_loss = self.nsp_loss( |
|
rearrange(seq_relationship_score, "... t -> (...) t"), |
|
rearrange(next_sentence_label, "... -> (...)"), |
|
).float() |
|
else: |
|
next_sentence_loss = 0 |
|
|
|
total_loss = masked_lm_loss + next_sentence_loss |
|
|
|
return BertForPreTrainingOutput( |
|
loss=total_loss, |
|
prediction_logits=prediction_scores, |
|
seq_relationship_logits=seq_relationship_score, |
|
) |