""" Implementation of BERT, using ALiBi and Flash Attention The implementation was adopted from https://github.com/Dao-AILab/flash-attention/blob/43950dda456e095969d842fca7a73c5bfe3cecd0/flash_attn/models/bert.py and made modifications to use ALiBi. """ # Copyright (c) 2022, Tri Dao. # This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation. # https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py # https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py # Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py import logging import re from collections import OrderedDict from collections.abc import Sequence from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from transformers.modeling_utils import PretrainedModel from .configuration_bert import JinaBertConfig from transformers.models.bert.modeling_bert import ( BaseModelOutputWithPoolingAndCrossAttentions, BertForPreTrainingOutput, ) from flash_attn.bert_padding import ( index_first_axis, index_first_axis_residual, pad_input, unpad_input, ) from flash_attn.modules.block import Block from flash_attn.modules.embedding import BertEmbeddings from flash_attn.modules.mha import MHA from flash_attn.modules.mlp import FusedMLP, Mlp try: from flash_attn.ops.fused_dense import FusedDense except ImportError: FusedDense = None try: from flash_attn.ops.triton.layer_norm import layer_norm_fn except ImportError: layer_norm_fn = None try: from flash_attn.losses.cross_entropy import CrossEntropyLoss except ImportError: CrossEntropyLoss = None logger = logging.getLogger(__name__) def create_mixer_cls(config, cross_attn=False, return_residual=False): fused_bias_fc = getattr(config, "fused_bias_fc", False) window_size = getattr(config, "window_size", (-1, -1)) mixer_cls = partial( MHA, num_heads=config.num_attention_heads, cross_attn=cross_attn, dropout=config.attention_probs_dropout_prob, causal=False, fused_bias_fc=fused_bias_fc, use_flash_attn=True, return_residual=return_residual, use_alibi=True, window_size=window_size, ) return mixer_cls def create_mlp_cls(config, layer_idx=None, return_residual=False): inner_dim = config.intermediate_size fused_mlp = getattr(config, "fused_mlp", False) if fused_mlp: assert config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"], ( "fused_mlp only " "supports approximate gelu" ) if not fused_mlp: approximate = ( "tanh" if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] else "none" ) mlp_cls = partial( Mlp, hidden_features=inner_dim, activation=partial(F.gelu, approximate=approximate), return_residual=return_residual, ) else: if FusedMLP is None: raise ImportError("fused_dense is not installed") mlp_checkpoint_lvl = getattr(config, "mlp_checkpoint_lvl", 0) # mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer if isinstance(mlp_checkpoint_lvl, Sequence): assert layer_idx is not None mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx] mlp_cls = partial( FusedMLP, hidden_features=inner_dim, checkpoint_lvl=mlp_checkpoint_lvl, return_residual=return_residual, ) return mlp_cls def create_block(config, layer_idx=None): last_layer_subset = getattr(config, "last_layer_subset", False) cross_attn = last_layer_subset and layer_idx == config.num_hidden_layers - 1 # TD [2022-12-19]: For cross attention (last layer), we actually want to return the # residual x_kv, not residual x. But it's annoying to change the API (and it only affects # one layer) so we just choose not to return residual in this case. return_residual = not cross_attn mixer_cls = create_mixer_cls(config, cross_attn, return_residual=return_residual) mlp_cls = create_mlp_cls(config, layer_idx, return_residual=return_residual) norm_cls = partial(nn.LayerNorm, eps=config.layer_norm_eps) block = Block( config.hidden_size, mixer_cls, mlp_cls, norm_cls=norm_cls, prenorm=False, resid_dropout1=config.hidden_dropout_prob, resid_dropout2=config.hidden_dropout_prob, fused_dropout_add_ln=getattr(config, "fused_dropout_add_ln", False), return_residual=return_residual, ) return block # https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748 def _init_weights(module, initializer_range=0.02): if isinstance(module, nn.Linear): nn.init.normal_(module.weight, std=initializer_range) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, std=initializer_range) if module.padding_idx is not None: nn.init.zeros_(module.weight[module.padding_idx]) class BertEncoder(nn.Module): def __init__(self, config: JinaBertConfig): super().__init__() self.layers = nn.ModuleList( [create_block(config, layer_idx=i) for i in range(config.num_hidden_layers)] ) def forward(self, hidden_states, key_padding_mask=None, subset_mask=None): """If subset_mask is not None, we only want output for the subset of the sequence. This means that we only compute the last layer output for these tokens. subset_mask: (batch, seqlen), dtype=torch.bool """ if key_padding_mask is None: mixer_kwargs = ( {"key_padding_mask": key_padding_mask} if key_padding_mask is not None else None ) for layer in self.layers: hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs) if subset_mask is not None: hidden_states = hidden_states[subset_mask] else: batch, seqlen = hidden_states.shape[:2] hidden_states, indices, cu_seqlens, max_seqlen_in_batch = unpad_input( hidden_states, key_padding_mask ) mixer_kwargs = {"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen_in_batch} if subset_mask is None: for layer in self.layers: hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs) hidden_states = pad_input(hidden_states, indices, batch, seqlen) else: for layer in self.layers[:-1]: hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs) if key_padding_mask is not None: subset_idx = torch.nonzero( subset_mask[key_padding_mask], as_tuple=False ).flatten() subset_seqlens = (subset_mask & key_padding_mask).sum(dim=-1, dtype=torch.int32) subset_cu_seqlens = F.pad( torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), (1, 0) ) else: subset_idx = torch.nonzero(subset_mask, as_tuple=False).flatten() subset_seqlens = subset_mask.sum(dim=-1, dtype=torch.int32) subset_cu_seqlens = F.pad( torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), (1, 0) ) hidden_states_subset, hidden_states = index_first_axis_residual( hidden_states, subset_idx ) # It's ok to set max_seqlen_q to be much larger mixer_kwargs = { "x_kv": hidden_states, "cu_seqlens": subset_cu_seqlens, "max_seqlen": max_seqlen_in_batch, "cu_seqlens_k": cu_seqlens, "max_seqlen_k": max_seqlen_in_batch, } hidden_states = self.layers[-1](hidden_states_subset, mixer_kwargs=mixer_kwargs) return hidden_states class BertPooler(nn.Module): def __init__(self, config): super().__init__() fused_bias_fc = getattr(config, "fused_bias_fc", False) if fused_bias_fc and FusedDense is None: raise ImportError("fused_dense is not installed") linear_cls = nn.Linear if not fused_bias_fc else FusedDense self.dense = linear_cls(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states, pool=True): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] if pool else hidden_states pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class BertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() fused_bias_fc = getattr(config, "fused_bias_fc", False) if fused_bias_fc and FusedDense is None: raise ImportError("fused_dense is not installed") self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False) if self.fused_dropout_add_ln and layer_norm_fn is None: raise ImportError("Triton is not installed") linear_cls = nn.Linear if not fused_bias_fc else FusedDense self.dense = linear_cls(config.hidden_size, config.hidden_size) approximate = ( "tanh" if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] else "none" ) self.transform_act_fn = nn.GELU(approximate=approximate) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) if not self.fused_dropout_add_ln: hidden_states = self.layer_norm(hidden_states) else: hidden_states = layer_norm_fn( hidden_states, self.layer_norm.weight, self.layer_norm.bias, eps=self.layer_norm.eps ) return hidden_states class BertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() fused_bias_fc = getattr(config, "fused_bias_fc", False) if fused_bias_fc and FusedDense is None: raise ImportError("fused_dense is not installed") linear_cls = nn.Linear if not fused_bias_fc else FusedDense self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = linear_cls(config.hidden_size, config.vocab_size, bias=True) def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states class BertPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = BertLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class BertPreTrainedModel(PretrainedModel): """An abstract class to handle weights initialization and a simple interface for dowloading and loading pretrained models. """ def __init__(self, config, *inputs, **kwargs): super().__init__() if not config.__class__.__name__ == 'JinaBertConfig': raise ValueError( "Parameter config in `{}(config)` should be an instance of class `JinaBertConfig`.".format( self.__class__.__name__, ) ) self.config = config class BertModel(BertPreTrainedModel): def __init__(self, config: JinaBertConfig, add_pooling_layer=True): super().__init__(config) self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) if config.vocab_size % self.pad_vocab_size_multiple != 0: config.vocab_size += self.pad_vocab_size_multiple - ( config.vocab_size % self.pad_vocab_size_multiple ) self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False) if self.fused_dropout_add_ln and layer_norm_fn is None: raise ImportError("Triton is not installed") assert config.hidden_act in ["gelu", "gelu_new", "gelu_fast", "gelu_pytorch_tanh"] self.embeddings = BertEmbeddings( config.hidden_size, config.vocab_size, -1, # No position embeddings config.type_vocab_size, padding_idx=config.pad_token_id, ) self.emb_drop = nn.Dropout(config.hidden_dropout_prob) self.emb_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) if add_pooling_layer else None self.apply(partial(_init_weights, initializer_range=config.initializer_range)) def forward( self, input_ids, position_ids=None, token_type_ids=None, attention_mask=None, masked_tokens_mask=None, ): """If masked_tokens_mask is not None (i.e. last_layer_subset == True in BertForPreTraining), we only want the output for the masked tokens. This means that we only compute the last layer output for these tokens. masked_tokens_mask: (batch, seqlen), dtype=torch.bool """ hidden_states = self.embeddings( input_ids, position_ids=position_ids, token_type_ids=token_type_ids ) # TD [2022-12:18]: Don't need to force residual in fp32 # BERT puts embedding LayerNorm before embedding dropout. if not self.fused_dropout_add_ln: hidden_states = self.emb_ln(hidden_states) else: hidden_states = layer_norm_fn( hidden_states, self.emb_ln.weight, self.emb_ln.bias, eps=self.emb_ln.eps ) hidden_states = self.emb_drop(hidden_states) if masked_tokens_mask is not None: batch_size, seqlen = input_ids.shape[:2] # We also need the first column for the CLS token first_col_mask = torch.zeros( batch_size, seqlen, dtype=torch.bool, device=input_ids.device ) first_col_mask[:, 0] = True subset_mask = masked_tokens_mask | first_col_mask else: subset_mask = None sequence_output = self.encoder( hidden_states, key_padding_mask=attention_mask, subset_mask=subset_mask ) if masked_tokens_mask is None: pooled_output = self.pooler(sequence_output) if self.pooler is not None else None else: # TD [2022-03-01]: the indexing here is very tricky. if attention_mask is not None: subset_idx = subset_mask[attention_mask] pool_input = sequence_output[first_col_mask[attention_mask][subset_idx]] sequence_output = sequence_output[masked_tokens_mask[attention_mask][subset_idx]] else: pool_input = sequence_output[first_col_mask[subset_mask]] sequence_output = sequence_output[masked_tokens_mask[subset_mask]] pooled_output = self.pooler(pool_input, pool=False) if self.pooler is not None else None return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, ) class BertForPreTraining(BertPreTrainedModel): def __init__(self, config: JinaBertConfig): super().__init__(config) # If dense_seq_output, we only need to pass the hidden states for the masked out tokens # (around 15%) to the classifier heads. self.dense_seq_output = getattr(config, "dense_seq_output", False) # If last_layer_subset, we only need the compute the last layer for a subset of tokens # (e.g., the tokens we need to compute the masked LM loss and the next-sentence prediction). self.last_layer_subset = getattr(config, "last_layer_subset", False) if self.last_layer_subset: assert self.dense_seq_output, "last_layer_subset requires dense_seq_output" use_xentropy = getattr(config, "use_xentropy", False) if use_xentropy and CrossEntropyLoss is None: raise ImportError("xentropy_cuda is not installed") loss_cls = ( nn.CrossEntropyLoss if not use_xentropy else partial(CrossEntropyLoss, inplace_backward=True) ) self.bert = BertModel(config) self.cls = BertPreTrainingHeads(config) self.mlm_loss = loss_cls(ignore_index=0) self.nsp_loss = loss_cls(ignore_index=-1) # Initialize weights and apply final processing self.apply(partial(_init_weights, initializer_range=config.initializer_range)) self.tie_weights() def tie_weights(self): self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight def get_input_embeddings(self): return self.bert.embeddings.word_embeddings def forward( self, input_ids, position_ids=None, token_type_ids=None, attention_mask=None, labels=None, next_sentence_label=None, ): """ If labels are provided, they must be 0 for masked out tokens (as specified in the attention mask). Outputs: if `labels` and `next_sentence_label` are not `None`: Outputs the total_loss which is the sum of the masked language modeling loss and the next sentence classification loss. if `labels` or `next_sentence_label` is `None`: Outputs a tuple comprising - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and - the next sentence classification logits of shape [batch_size, 2]. """ masked_tokens_mask = labels > 0 if (self.last_layer_subset and labels is not None) else None outputs = self.bert( input_ids, position_ids=position_ids, token_type_ids=token_type_ids, attention_mask=attention_mask.bool() if attention_mask is not None else None, masked_tokens_mask=masked_tokens_mask, ) sequence_output, pooled_output = outputs.last_hidden_state, outputs.pooler_output if self.dense_seq_output and labels is not None: masked_token_idx = torch.nonzero(labels.flatten() > 0, as_tuple=False).flatten() if not self.last_layer_subset: sequence_output = index_first_axis( rearrange(sequence_output, "b s d -> (b s) d"), masked_token_idx ) prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) if ( self.dense_seq_output and labels is not None ): # prediction_scores are already flattened masked_lm_loss = self.mlm_loss( prediction_scores, labels.flatten()[masked_token_idx] ).float() elif labels is not None: masked_lm_loss = self.mlm_loss( rearrange(prediction_scores, "... v -> (...) v"), rearrange(labels, "... -> (...)"), ).float() else: masked_lm_loss = 0 if next_sentence_label is not None: next_sentence_loss = self.nsp_loss( rearrange(seq_relationship_score, "... t -> (...) t"), rearrange(next_sentence_label, "... -> (...)"), ).float() else: next_sentence_loss = 0 total_loss = masked_lm_loss + next_sentence_loss return BertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, )