File size: 20,779 Bytes
56fe6da
 
 
 
 
 
 
cd1adcb
79a1cae
 
 
e1eb2c8
56fe6da
 
 
 
cd1adcb
 
 
 
 
 
 
 
56fe6da
 
 
 
 
 
cd1adcb
e1eb2c8
 
 
 
 
 
56fe6da
 
 
 
7f069e2
 
 
56fe6da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d5d4fd
 
 
 
 
56fe6da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1eb2c8
 
56fe6da
 
cd1adcb
 
 
 
 
 
 
 
 
 
 
 
 
 
56fe6da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1eb2c8
56fe6da
 
e1eb2c8
 
 
 
 
 
 
 
 
 
cd1adcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1eb2c8
 
 
fe33287
e1eb2c8
 
cd1adcb
e1eb2c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56fe6da
e1eb2c8
 
 
 
 
 
 
 
 
cd1adcb
e1eb2c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79a1cae
e1eb2c8
 
 
 
 
 
 
79a1cae
 
 
 
 
e1eb2c8
56fe6da
 
6cf8056
e1eb2c8
 
 
 
 
 
 
 
 
79a1cae
e1eb2c8
79a1cae
 
e1eb2c8
 
 
 
cd1adcb
 
e1eb2c8
 
 
 
 
 
 
 
 
cd1adcb
 
 
e1eb2c8
 
 
 
 
79a1cae
e1eb2c8
 
79a1cae
e1eb2c8
fe33287
79a1cae
e1eb2c8
 
 
 
 
79a1cae
e1eb2c8
 
79a1cae
e1eb2c8
 
 
 
79a1cae
e1eb2c8
 
79a1cae
 
e1eb2c8
 
79a1cae
e1eb2c8
 
 
 
 
cd1adcb
e1eb2c8
 
 
 
628d3ce
 
79a1cae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
806a44b
79a1cae
ff1a2e8
ab3363e
e1eb2c8
79a1cae
e1eb2c8
 
 
 
 
79a1cae
e1eb2c8
79a1cae
e1eb2c8
 
 
79a1cae
 
e1eb2c8
 
79a1cae
e1eb2c8
 
56fe6da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
# coding=utf-8
#
# Code mainly copied from:
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/clip/modeling_clip.py
# and adjusted for Jina CLIP

from functools import partial
from typing import List, Optional, Tuple, Union
from io import BytesIO
import requests
import base64
import numpy as np
import torch
import torch.nn.functional as f
import torch.utils.checkpoint
from torch import nn
from transformers import (
    AutoImageProcessor,
    AutoTokenizer,
    BatchEncoding,
    BatchFeature,
    PreTrainedModel,
    logging,
)
from transformers.models.clip.modeling_clip import (
    CLIPOutput,
    CLIPTextModelOutput,
    CLIPVisionModelOutput,
    clip_loss,
)

try:
    from tqdm.autonotebook import trange

    has_tqdm = True
except ImportError:
    has_tqdm = False

from .configuration_clip import JinaCLIPConfig, JinaCLIPTextConfig, JinaCLIPVisionConfig
from .eva_model import EVAVisionTransformer
from .hf_model import HFTextEncoder
# needed for HF to correctly import in cache
from .rope_embeddings import VisionRotaryEmbeddingFast  # noqa: F401
from .transform import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD, image_transform  # noqa: F401

logger = logging.get_logger(__name__)


""" Jina CLIP model implementation """


class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm (with cast back to input dtype)."""

    def forward(self, x: torch.Tensor):
        origtype = x.dtype
        x = f.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        return x.to(origtype)


def _build_text_tower(config: JinaCLIPTextConfig) -> HFTextEncoder:
    return HFTextEncoder(
        model_name_or_path=config.hf_model_name_or_path,
        output_dim=config.embed_dim,
        pooler_type=config.pooler_type,
        proj_type=config.proj_type,
        proj_bias=config.proj_bias,
        pretrained=False,
        output_tokens=False,
        trust_remote_code=True,
        revision=None,
        model_config_kwargs=config.hf_model_config_kwargs,
    )


def _build_vision_tower(config: JinaCLIPVisionConfig) -> EVAVisionTransformer:
    norm_layer = partial(LayerNorm, eps=1e-6)

    if config.fused_layer_norm:
        try:
            from apex.normalization import FusedLayerNorm

            norm_layer = partial(FusedLayerNorm, eps=1e-6)
        except (ModuleNotFoundError, ImportError):
            logger.warning('Please install apex to use fused layer norm, ignoring')

    return EVAVisionTransformer(
        img_size=config.image_size,
        patch_size=config.patch_size,
        num_classes=config.embed_dim,
        use_mean_pooling=False,
        init_values=config.ls_init_value,
        patch_dropout=config.patch_dropout,
        embed_dim=config.width,
        depth=config.layers,
        num_heads=config.width // config.head_width,
        mlp_ratio=config.mlp_ratio,
        qkv_bias=config.qkv_bias,
        drop_path_rate=config.drop_path_rate,
        norm_layer=norm_layer,
        xattn=config.x_attention,
        rope=config.rope_embeddings,
        postnorm=config.post_norm,
        pt_hw_seq_len=config.pt_hw_seq_len,
        intp_freq=config.intp_freq,
        naiveswiglu=config.naive_swiglu,
        subln=config.subln,
        proj_type=config.proj_type,
    )


class JinaCLIPPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for
    downloading and loading pretrained models.
    """

    config_class = JinaCLIPConfig
    base_model_prefix = 'clip'
    supports_gradient_checkpointing = True

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, JinaCLIPModel):
            if isinstance(module.text_projection, nn.Linear):
                nn.init.normal_(
                    module.text_projection.weight,
                    std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
                )
            if isinstance(module.text_projection, nn.Linear):
                nn.init.normal_(
                    module.visual_projection.weight,
                    std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
                )
        if isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


class JinaCLIPTextModel(JinaCLIPPreTrainedModel):
    config_class = JinaCLIPTextConfig

    def __init__(self, config: JinaCLIPTextConfig):
        super().__init__(config)
        self.text_model = _build_text_tower(config)
        self.post_init()

    def forward(
        self,
        input_ids: Union[None, torch.Tensor, BatchEncoding] = None,
        return_dict: Optional[bool] = None,
        *_,
        **__,
    ) -> Union[Tuple[Optional[torch.FloatTensor], ...], CLIPTextModelOutput]:
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )
        x = input_ids.input_ids if isinstance(input_ids, BatchEncoding) else input_ids
        feats = self.text_model(x=x)
        out = CLIPTextModelOutput(text_embeds=feats)
        return out if return_dict else out.to_tuple()


class JinaCLIPVisionModel(JinaCLIPPreTrainedModel):
    config_class = JinaCLIPVisionConfig
    main_input_name = 'pixel_values'

    def __init__(self, config: JinaCLIPVisionConfig):
        super().__init__(config)
        self.vision_model = _build_vision_tower(config)
        self.post_init()

    def forward(
        self,
        pixel_values: Union[None, torch.FloatTensor, BatchFeature] = None,
        return_dict: Optional[bool] = None,
        *_,
        **__,
    ) -> Union[Tuple[Optional[torch.FloatTensor], ...], CLIPVisionModelOutput]:
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )
        x = (
            pixel_values.pixel_values
            if isinstance(pixel_values, BatchFeature)
            else pixel_values
        )
        feats = self.vision_model(x=x)
        out = CLIPVisionModelOutput(image_embeds=feats)
        return out if return_dict else out.to_tuple()


class JinaCLIPModel(JinaCLIPPreTrainedModel):
    config_class = JinaCLIPConfig

    def __init__(self, config: JinaCLIPConfig):
        super().__init__(config)

        if not isinstance(config.text_config, JinaCLIPTextConfig):
            raise ValueError(
                'Attribute config.text_config is expected to be of type '
                f'JinaCLIPTextConfig but is of type {type(config.text_config)}.'
            )

        if not isinstance(config.vision_config, JinaCLIPVisionConfig):
            raise ValueError(
                'Attribute config.vision_config is expected to be of type '
                f'JinaCLIPVisionConfig but is of type {type(config.vision_config)}.'
            )

        text_config = config.text_config
        vision_config = config.vision_config

        if config.use_text_flash_attn is not None:
            text_config.hf_model_config_kwargs['use_flash_attn'] = config.use_text_flash_attn
        if config.use_vision_xformers is not None:
            vision_config.x_attention = config.use_vision_xformers

        self.add_projections = config.add_projections
        self.projection_dim = config.projection_dim
        self.text_embed_dim = text_config.embed_dim
        self.vision_embed_dim = vision_config.embed_dim

        self.text_model = _build_text_tower(text_config)
        self.vision_model = _build_vision_tower(vision_config)
        self.logit_scale = nn.Parameter(
            torch.tensor(self.config.logit_scale_init_value)
        )

        if self.add_projections:
            self.visual_projection = nn.Linear(
                self.vision_embed_dim, self.projection_dim, bias=False
            )
            self.text_projection = nn.Linear(
                self.text_embed_dim, self.projection_dim, bias=False
            )
        else:
            self.visual_projection = nn.Identity()
            self.text_projection = nn.Identity()

        self.tokenizer = None
        self.preprocess = None
        self.post_init()

    def get_tokenizer(self):
        if not self.tokenizer:
            self.tokenizer = AutoTokenizer.from_pretrained(
                self.config._name_or_path, trust_remote_code=True
            )
        return self.tokenizer

    def get_preprocess(self):
        if not self.preprocess:
            self.preprocess = AutoImageProcessor.from_pretrained(
                self.config._name_or_path, trust_remote_code=True
            )
        return self.preprocess

    def get_text_features(
        self,
        input_ids: Union[None, torch.Tensor, BatchEncoding] = None,
        *_,
        **__,
    ) -> torch.FloatTensor:
        x = input_ids.input_ids if isinstance(input_ids, BatchEncoding) else input_ids
        return self.text_projection(self.text_model(x=x))

    def get_image_features(
        self,
        pixel_values: Union[None, torch.FloatTensor, BatchFeature] = None,
        *_,
        **__,
    ) -> torch.FloatTensor:
        x = (
            pixel_values.pixel_values
            if isinstance(pixel_values, BatchFeature)
            else pixel_values
        )
        return self.visual_projection(self.vision_model(x=x))

    @torch.inference_mode()
    def encode_text(
        self,
        sentences: Union[str, List[str]],
        batch_size: int = 32,
        show_progress_bar: Optional[bool] = None,
        convert_to_numpy: bool = True,
        convert_to_tensor: bool = False,
        device: Optional[torch.device] = None,
        normalize_embeddings: bool = False,
        **tokenizer_kwargs,
    ) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
        """
        Computes sentence embeddings
         Args:
             sentences(`str` or `List[str]`):
                 Sentence or sentences to be encoded
             batch_size(`int`, *optional*, defaults to 32):
                 Batch size for the computation
             show_progress_bar(`bool`, *optional*, defaults to None):
                 Show a progress bar when encoding sentences.
                 If set to None, progress bar is only shown when
                 `logger.level == logging.INFO` or `logger.level == logging.DEBUG`.
             convert_to_numpy(`bool`, *optional*, defaults to True):
                 If true, the output is a list of numpy vectors.
                 Else, it is a list of pytorch tensors.
             convert_to_tensor(`bool`, *optional*, defaults to False):
                 If true, you get one large tensor as return.
                 Overwrites any setting from convert_to_numpy
             device(`torch.device`, *optional*, defaults to None):
                 Which torch.device to use for the computation
             normalize_embeddings(`bool`, *optional*, defaults to False):
                 If set to true, returned vectors will have length 1. In that case,
                 the faster dot-product (util.dot_score) instead of cosine similarity
                 can be used.
             tokenizer_kwargs(`Dict[str, Any]`, *optional*, defaults to {}):
                 Keyword arguments for the tokenizer
         Returns:
             By default, a list of tensors is returned.
             If convert_to_tensor, a stacked tensor is returned.
             If convert_to_numpy, a numpy matrix is returned.
        """
        is_training = self.training
        self.eval()
        all_embeddings = []

        self.tokenizer = self.get_tokenizer()

        if show_progress_bar is None:
            show_progress_bar = (
                logger.getEffectiveLevel() == logging.INFO
                or logger.getEffectiveLevel() == logging.DEBUG
            )

        if convert_to_tensor:
            convert_to_numpy = False

        input_was_string = False
        if isinstance(sentences, str) or not hasattr(sentences, '__len__'):
            sentences = [sentences]
            input_was_string = True

        if device is not None:
            self.to(device)

        permutation = np.argsort([-len(i) for i in sentences])
        inverse_permutation = np.argsort(permutation)
        sentences = [sentences[idx] for idx in permutation]

        tokenizer_kwargs['padding'] = tokenizer_kwargs.get('padding', True)
        tokenizer_kwargs['max_length'] = tokenizer_kwargs.get('max_length', 512)
        tokenizer_kwargs['truncation'] = tokenizer_kwargs.get('truncation', True)

        if has_tqdm:
            range_iter = trange(
                0,
                len(sentences),
                batch_size,
                desc='Encoding',
                disable=not show_progress_bar,
            )
        else:
            range_iter = range(0, len(sentences), batch_size)

        for i in range_iter:
            encoded_input = self.tokenizer(
                sentences[i : i + batch_size],
                return_tensors='pt',
                **tokenizer_kwargs,
            ).to(self.device)

            embeddings = self.get_text_features(input_ids=encoded_input)
            if normalize_embeddings:
                embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
            if convert_to_numpy:
                embeddings = embeddings.cpu()
            all_embeddings.extend(embeddings)

        all_embeddings = [all_embeddings[idx] for idx in inverse_permutation]

        if convert_to_tensor:
            all_embeddings = torch.stack(all_embeddings)
        elif convert_to_numpy:
            all_embeddings = np.asarray([emb.to(torch.float32).numpy() for emb in all_embeddings])

        if input_was_string:
            all_embeddings = all_embeddings[0]

        self.train(is_training)
        return all_embeddings

    def decode_data_image(data_image_str):
        header, data = data_image_str.split(',', 1)
        image_data = base64.b64decode(data)
        return Image.open(BytesIO(image_data))

    @torch.inference_mode()
    def encode_image(
        self,
        images: Union[str, List[Union[str, "Image.Image"]]],
        batch_size: int = 32,
        show_progress_bar: Optional[bool] = None,
        convert_to_numpy: bool = True,
        convert_to_tensor: bool = False,
        device: Optional[torch.device] = None,
        normalize_embeddings: bool = False,
    ) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
        """
        Computes image embeddings.
    
        Args:
            images(`str` or `List[Union[str, Image.Image]]`):
                image paths, URLs, PIL images, or data:image/ strings to be encoded
            batch_size(`int`, *optional*, defaults to 32):
                Batch size for the computation
            show_progress_bar(`bool`, *optional*, defaults to None):
                Show a progress bar when encoding images.
                If set to None, progress bar is only shown when
                `logger.level == logging.INFO` or `logger.level == logging.DEBUG`.
            convert_to_numpy(`bool`, *optional*, defaults to True):
                If true, the output is a list of numpy vectors.
                Else, it is a list of pytorch tensors.
            convert_to_tensor(`bool`, *optional*, defaults to False):
                If true, you get one large tensor as return.
                Overwrites any setting from convert_to_numpy
            device(`torch.device`, *optional*, defaults to None):
                Which torch.device to use for the computation
            normalize_embeddings(`bool`, *optional*, defaults to False):
                If set to true, returned vectors will have length 1. In that case,
                the faster dot-product (util.dot_score) instead of cosine similarity
                can be used.
        Returns:
            By default, a list of tensors is returned.
            If convert_to_tensor, a stacked tensor is returned.
            If convert_to_numpy, a numpy matrix is returned.
        """
        
        is_training = self.training
        self.eval()
    
        self.preprocess = self.get_preprocess()
        all_embeddings = []
    
        if show_progress_bar is None:
            show_progress_bar = (
                logger.getEffectiveLevel() == logging.INFO
                or logger.getEffectiveLevel() == logging.DEBUG
            )
    
        if convert_to_tensor:
            convert_to_numpy = False
    
        input_was_single_img = False
        if isinstance(images, str) or not hasattr(images, '__len__'):
            images = [images]
            input_was_single_img = True
    
        if device is not None:
            self.to(device)
    
        permutation = np.argsort([-len(str(i)) for i in images])
        inverse_permutation = np.argsort(permutation)
        images = [images[idx] for idx in permutation]
    
        if has_tqdm:
            range_iter = trange(
                0,
                len(images),
                batch_size,
                desc='Encoding',
                disable=not show_progress_bar,
            )
        else:
            range_iter = range(0, len(images), batch_size)

        from PIL import Image
    
        for i in range_iter:
            batch_images = images[i:i+batch_size]
            processed_inputs = []
    
            for img in batch_images:
                if isinstance(img, str):
                    if img.startswith('http'):
                        response = requests.get(img)
                        image = Image.open(BytesIO(response.content)).convert('RGB')
                    elif img.startswith('data:image/'):
                        image = decode_data_image(img).convert('RGB')
                    else:
                        image = Image.open(img).convert('RGB')
                elif isinstance(img, Image.Image):
                    image = img.convert('RGB')
                else:
                    raise ValueError("Unsupported image format")
    
                processed_inputs.append(image)
    
            processed_inputs = self.preprocess(processed_inputs)
            processed_inputs = processed_inputs.to(self.device)
            embeddings = self.get_image_features(processed_inputs)
            
            if normalize_embeddings:
                embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
            if convert_to_numpy:
                embeddings = embeddings.cpu()
            all_embeddings.extend(embeddings)
    
        all_embeddings = [all_embeddings[idx] for idx in inverse_permutation]
    
        if convert_to_tensor:
            all_embeddings = torch.stack(all_embeddings)
        elif convert_to_numpy:
            all_embeddings = np.asarray([emb.to(torch.float32).numpy() for emb in all_embeddings])
    
        if input_was_single_img:
            all_embeddings = all_embeddings[0]
    
        self.train(is_training)
        return all_embeddings

    def forward(
        self,
        input_ids: Union[None, torch.Tensor, BatchEncoding] = None,
        pixel_values: Union[None, torch.FloatTensor, BatchFeature] = None,
        return_dict: Optional[bool] = None,
        return_loss: Optional[bool] = None,
        *_,
        **__,
    ) -> Union[Tuple[Optional[torch.FloatTensor], ...], CLIPOutput]:
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )
        image_embeds = self.get_image_features(pixel_values=pixel_values)
        text_embeds = self.get_text_features(input_ids=input_ids)

        # normalized features
        image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
        text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)

        # cosine similarity as logits
        logit_scale = self.logit_scale.exp()
        logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
        logits_per_image = logits_per_text.t()

        loss = None
        if return_loss:
            loss = clip_loss(logits_per_text)

        if not return_dict:
            output = (
                logits_per_image,
                logits_per_text,
                text_embeds,
                image_embeds,
                None,
                None,
            )
            return ((loss,) + output) if loss is not None else output

        return CLIPOutput(
            loss=loss,
            logits_per_image=logits_per_image,
            logits_per_text=logits_per_text,
            text_embeds=text_embeds,
            image_embeds=image_embeds,
            text_model_output=None,
            vision_model_output=None,
        )