gmastrapas
commited on
Commit
·
cd77b48
1
Parent(s):
96e41b8
feat: jina clip v2 implementation
Browse files- .gitignore +70 -0
- configuration_clip.py +0 -6
- eva_model.py +27 -27
- hf_model.py +56 -85
- modeling_clip.py +197 -156
- processing_clip.py +0 -1
- transform.py +95 -179
.gitignore
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Project specific
|
2 |
+
__init__.py
|
3 |
+
pyproject.toml
|
4 |
+
|
5 |
+
# Byte-compiled / optimized / DLL files
|
6 |
+
__pycache__/
|
7 |
+
*.py[cod]
|
8 |
+
*$py.class
|
9 |
+
|
10 |
+
# C extensions
|
11 |
+
*.so
|
12 |
+
|
13 |
+
# Distribution / packaging
|
14 |
+
.Python
|
15 |
+
build/
|
16 |
+
develop-eggs/
|
17 |
+
dist/
|
18 |
+
downloads/
|
19 |
+
eggs/
|
20 |
+
.eggs/
|
21 |
+
lib/
|
22 |
+
lib64/
|
23 |
+
parts/
|
24 |
+
sdist/
|
25 |
+
var/
|
26 |
+
wheels/
|
27 |
+
pip-wheel-metadata/
|
28 |
+
share/python-wheels/
|
29 |
+
*.egg-info/
|
30 |
+
.installed.cfg
|
31 |
+
*.egg
|
32 |
+
MANIFEST
|
33 |
+
|
34 |
+
# Unit test / coverage reports
|
35 |
+
htmlcov/
|
36 |
+
.tox/
|
37 |
+
.nox/
|
38 |
+
.coverage
|
39 |
+
.coverage.*
|
40 |
+
.cache
|
41 |
+
nosetests.xml
|
42 |
+
coverage.xml
|
43 |
+
*.cover
|
44 |
+
*.py,cover
|
45 |
+
.hypothesis/
|
46 |
+
.pytest_cache/
|
47 |
+
|
48 |
+
# Jupyter Notebook
|
49 |
+
.ipynb_checkpoints
|
50 |
+
|
51 |
+
# IPython
|
52 |
+
profile_default/
|
53 |
+
ipython_config.py
|
54 |
+
|
55 |
+
# Environments
|
56 |
+
.env
|
57 |
+
.venv
|
58 |
+
env/
|
59 |
+
venv/
|
60 |
+
ENV/
|
61 |
+
env.bak/
|
62 |
+
venv.bak/
|
63 |
+
|
64 |
+
# mypy
|
65 |
+
.mypy_cache/
|
66 |
+
.dmypy.json
|
67 |
+
dmypy.json
|
68 |
+
|
69 |
+
# PyCharm
|
70 |
+
.idea/
|
configuration_clip.py
CHANGED
@@ -47,11 +47,9 @@ class JinaCLIPTextConfig(PretrainedConfig):
|
|
47 |
configdict, kwargs = cls.get_config_dict(
|
48 |
pretrained_model_name_or_path, **kwargs
|
49 |
)
|
50 |
-
|
51 |
# get the text config dict if we are loading from JinaCLIPConfig
|
52 |
if configdict.get('model_type') == 'jina_clip':
|
53 |
configdict = configdict['text_config']
|
54 |
-
|
55 |
if (
|
56 |
'model_type' in configdict
|
57 |
and hasattr(cls, 'model_type')
|
@@ -62,7 +60,6 @@ class JinaCLIPTextConfig(PretrainedConfig):
|
|
62 |
f'instantiate a model of type {cls.model_type}. This is not supported '
|
63 |
'for all configurations of models and can yield errors.'
|
64 |
)
|
65 |
-
|
66 |
return cls.from_dict(configdict, **kwargs)
|
67 |
|
68 |
|
@@ -125,11 +122,9 @@ class JinaCLIPVisionConfig(PretrainedConfig):
|
|
125 |
configdict, kwargs = cls.get_config_dict(
|
126 |
pretrained_model_name_or_path, **kwargs
|
127 |
)
|
128 |
-
|
129 |
# get the vision config dict if we are loading from JinaCLIPConfig
|
130 |
if configdict.get('model_type') == 'jina_clip':
|
131 |
configdict = configdict['vision_config']
|
132 |
-
|
133 |
if (
|
134 |
'model_type' in configdict
|
135 |
and hasattr(cls, 'model_type')
|
@@ -140,7 +135,6 @@ class JinaCLIPVisionConfig(PretrainedConfig):
|
|
140 |
f'instantiate a model of type {cls.model_type}. This is not supported '
|
141 |
'for all configurations of models and can yield errors.'
|
142 |
)
|
143 |
-
|
144 |
return cls.from_dict(configdict, **kwargs)
|
145 |
|
146 |
|
|
|
47 |
configdict, kwargs = cls.get_config_dict(
|
48 |
pretrained_model_name_or_path, **kwargs
|
49 |
)
|
|
|
50 |
# get the text config dict if we are loading from JinaCLIPConfig
|
51 |
if configdict.get('model_type') == 'jina_clip':
|
52 |
configdict = configdict['text_config']
|
|
|
53 |
if (
|
54 |
'model_type' in configdict
|
55 |
and hasattr(cls, 'model_type')
|
|
|
60 |
f'instantiate a model of type {cls.model_type}. This is not supported '
|
61 |
'for all configurations of models and can yield errors.'
|
62 |
)
|
|
|
63 |
return cls.from_dict(configdict, **kwargs)
|
64 |
|
65 |
|
|
|
122 |
configdict, kwargs = cls.get_config_dict(
|
123 |
pretrained_model_name_or_path, **kwargs
|
124 |
)
|
|
|
125 |
# get the vision config dict if we are loading from JinaCLIPConfig
|
126 |
if configdict.get('model_type') == 'jina_clip':
|
127 |
configdict = configdict['vision_config']
|
|
|
128 |
if (
|
129 |
'model_type' in configdict
|
130 |
and hasattr(cls, 'model_type')
|
|
|
135 |
f'instantiate a model of type {cls.model_type}. This is not supported '
|
136 |
'for all configurations of models and can yield errors.'
|
137 |
)
|
|
|
138 |
return cls.from_dict(configdict, **kwargs)
|
139 |
|
140 |
|
eva_model.py
CHANGED
@@ -9,12 +9,12 @@ from functools import partial
|
|
9 |
|
10 |
import torch
|
11 |
import torch.nn as nn
|
12 |
-
import torch.nn.functional as
|
13 |
|
14 |
try:
|
15 |
-
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
|
16 |
except ImportError or ModuleNotFoundError:
|
17 |
-
from timm.layers import drop_path, to_2tuple, trunc_normal_
|
18 |
|
19 |
from .rope_embeddings import VisionRotaryEmbeddingFast
|
20 |
|
@@ -81,7 +81,7 @@ class DropPath(nn.Module):
|
|
81 |
self.drop_prob = drop_prob
|
82 |
|
83 |
def forward(self, x):
|
84 |
-
return
|
85 |
|
86 |
def extra_repr(self) -> str:
|
87 |
return 'p={}'.format(self.drop_prob)
|
@@ -244,17 +244,17 @@ class Attention(nn.Module):
|
|
244 |
self.rope = rope
|
245 |
|
246 |
def forward(self, x, rel_pos_bias=None, attn_mask=None):
|
247 |
-
|
248 |
if self.subln:
|
249 |
-
q =
|
250 |
-
k =
|
251 |
-
v =
|
252 |
|
253 |
-
q = q.reshape(
|
254 |
0, 2, 1, 3
|
255 |
) # B, num_heads, N, C
|
256 |
-
k = k.reshape(
|
257 |
-
v = v.reshape(
|
258 |
else:
|
259 |
qkv_bias = None
|
260 |
if self.q_bias is not None:
|
@@ -266,8 +266,8 @@ class Attention(nn.Module):
|
|
266 |
)
|
267 |
)
|
268 |
|
269 |
-
qkv =
|
270 |
-
qkv = qkv.reshape(
|
271 |
2, 0, 3, 1, 4
|
272 |
) # 3, B, num_heads, N, C
|
273 |
q, k, v = qkv[0], qkv[1], qkv[2]
|
@@ -298,7 +298,7 @@ class Attention(nn.Module):
|
|
298 |
p=self.xattn_drop,
|
299 |
scale=self.scale,
|
300 |
)
|
301 |
-
x = x.reshape(
|
302 |
x = self.inner_attn_ln(x)
|
303 |
x = self.proj(x)
|
304 |
x = self.proj_drop(x)
|
@@ -329,7 +329,7 @@ class Attention(nn.Module):
|
|
329 |
attn = attn.softmax(dim=-1)
|
330 |
attn = self.attn_drop(attn)
|
331 |
|
332 |
-
x = (attn @ v).transpose(1, 2).reshape(
|
333 |
x = self.inner_attn_ln(x)
|
334 |
x = self.proj(x)
|
335 |
x = self.proj_drop(x)
|
@@ -461,12 +461,12 @@ class PatchEmbed(nn.Module):
|
|
461 |
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
|
462 |
)
|
463 |
|
464 |
-
def forward(self, x, **
|
465 |
target_dtype = self.proj.weight.dtype
|
466 |
-
|
467 |
# FIXME look at relaxing size constraints
|
468 |
-
assert
|
469 |
-
f"Input image size ({
|
470 |
f'({self.img_size[0]}*{self.img_size[1]}).'
|
471 |
)
|
472 |
x = self.proj(x.to(dtype=target_dtype)).flatten(2).transpose(1, 2)
|
@@ -559,9 +559,8 @@ class EVAVisionTransformer(nn.Module):
|
|
559 |
super().__init__()
|
560 |
self.image_size = img_size
|
561 |
self.num_classes = num_classes
|
562 |
-
|
563 |
-
|
564 |
-
) = embed_dim # num_features for consistency with other models
|
565 |
|
566 |
self.patch_embed = PatchEmbed(
|
567 |
img_size=img_size,
|
@@ -666,8 +665,8 @@ class EVAVisionTransformer(nn.Module):
|
|
666 |
self.grad_checkpointing = grad_checkpointing
|
667 |
|
668 |
def fix_init_weight(self):
|
669 |
-
def rescale(param,
|
670 |
-
param.div_(math.sqrt(2.0 *
|
671 |
|
672 |
for layer_id, layer in enumerate(self.blocks):
|
673 |
rescale(layer.attn.proj.weight.data, layer_id + 1)
|
@@ -679,7 +678,8 @@ class EVAVisionTransformer(nn.Module):
|
|
679 |
def get_cast_dtype(self) -> torch.dtype:
|
680 |
return self.blocks[0].mlp.fc2.weight.dtype
|
681 |
|
682 |
-
|
|
|
683 |
if isinstance(m, nn.Linear):
|
684 |
trunc_normal_(m.weight, std=0.02)
|
685 |
if m.bias is not None:
|
@@ -691,7 +691,7 @@ class EVAVisionTransformer(nn.Module):
|
|
691 |
def get_num_layers(self):
|
692 |
return len(self.blocks)
|
693 |
|
694 |
-
def lock(self, unlocked_groups=0,
|
695 |
assert (
|
696 |
unlocked_groups == 0
|
697 |
), 'partial locking not currently supported for this model'
|
@@ -709,7 +709,7 @@ class EVAVisionTransformer(nn.Module):
|
|
709 |
def get_classifier(self):
|
710 |
return self.head
|
711 |
|
712 |
-
def reset_classifier(self, num_classes,
|
713 |
self.num_classes = num_classes
|
714 |
self.head = (
|
715 |
nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
|
|
9 |
|
10 |
import torch
|
11 |
import torch.nn as nn
|
12 |
+
import torch.nn.functional as f
|
13 |
|
14 |
try:
|
15 |
+
from timm.models.layers import drop_path as timm_drop_path, to_2tuple, trunc_normal_
|
16 |
except ImportError or ModuleNotFoundError:
|
17 |
+
from timm.layers import drop_path as timm_drop_path, to_2tuple, trunc_normal_
|
18 |
|
19 |
from .rope_embeddings import VisionRotaryEmbeddingFast
|
20 |
|
|
|
81 |
self.drop_prob = drop_prob
|
82 |
|
83 |
def forward(self, x):
|
84 |
+
return timm_drop_path(x, self.drop_prob, self.training)
|
85 |
|
86 |
def extra_repr(self) -> str:
|
87 |
return 'p={}'.format(self.drop_prob)
|
|
|
244 |
self.rope = rope
|
245 |
|
246 |
def forward(self, x, rel_pos_bias=None, attn_mask=None):
|
247 |
+
b, n, _ = x.shape
|
248 |
if self.subln:
|
249 |
+
q = f.linear(input=x, weight=self.q_proj.weight, bias=self.q_bias)
|
250 |
+
k = f.linear(input=x, weight=self.k_proj.weight, bias=None)
|
251 |
+
v = f.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias)
|
252 |
|
253 |
+
q = q.reshape(b, n, self.num_heads, -1).permute(
|
254 |
0, 2, 1, 3
|
255 |
) # B, num_heads, N, C
|
256 |
+
k = k.reshape(b, n, self.num_heads, -1).permute(0, 2, 1, 3)
|
257 |
+
v = v.reshape(b, n, self.num_heads, -1).permute(0, 2, 1, 3)
|
258 |
else:
|
259 |
qkv_bias = None
|
260 |
if self.q_bias is not None:
|
|
|
266 |
)
|
267 |
)
|
268 |
|
269 |
+
qkv = f.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
270 |
+
qkv = qkv.reshape(b, n, 3, self.num_heads, -1).permute(
|
271 |
2, 0, 3, 1, 4
|
272 |
) # 3, B, num_heads, N, C
|
273 |
q, k, v = qkv[0], qkv[1], qkv[2]
|
|
|
298 |
p=self.xattn_drop,
|
299 |
scale=self.scale,
|
300 |
)
|
301 |
+
x = x.reshape(b, n, -1)
|
302 |
x = self.inner_attn_ln(x)
|
303 |
x = self.proj(x)
|
304 |
x = self.proj_drop(x)
|
|
|
329 |
attn = attn.softmax(dim=-1)
|
330 |
attn = self.attn_drop(attn)
|
331 |
|
332 |
+
x = (attn @ v).transpose(1, 2).reshape(b, n, -1)
|
333 |
x = self.inner_attn_ln(x)
|
334 |
x = self.proj(x)
|
335 |
x = self.proj_drop(x)
|
|
|
461 |
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
|
462 |
)
|
463 |
|
464 |
+
def forward(self, x, **_):
|
465 |
target_dtype = self.proj.weight.dtype
|
466 |
+
_, __, h, w = x.shape
|
467 |
# FIXME look at relaxing size constraints
|
468 |
+
assert h == self.img_size[0] and w == self.img_size[1], (
|
469 |
+
f"Input image size ({h}*{w}) doesn't match model "
|
470 |
f'({self.img_size[0]}*{self.img_size[1]}).'
|
471 |
)
|
472 |
x = self.proj(x.to(dtype=target_dtype)).flatten(2).transpose(1, 2)
|
|
|
559 |
super().__init__()
|
560 |
self.image_size = img_size
|
561 |
self.num_classes = num_classes
|
562 |
+
# num_features for consistency with other models
|
563 |
+
self.num_features = self.embed_dim = embed_dim
|
|
|
564 |
|
565 |
self.patch_embed = PatchEmbed(
|
566 |
img_size=img_size,
|
|
|
665 |
self.grad_checkpointing = grad_checkpointing
|
666 |
|
667 |
def fix_init_weight(self):
|
668 |
+
def rescale(param, _layer_id):
|
669 |
+
param.div_(math.sqrt(2.0 * _layer_id))
|
670 |
|
671 |
for layer_id, layer in enumerate(self.blocks):
|
672 |
rescale(layer.attn.proj.weight.data, layer_id + 1)
|
|
|
678 |
def get_cast_dtype(self) -> torch.dtype:
|
679 |
return self.blocks[0].mlp.fc2.weight.dtype
|
680 |
|
681 |
+
@staticmethod
|
682 |
+
def _init_weights(m):
|
683 |
if isinstance(m, nn.Linear):
|
684 |
trunc_normal_(m.weight, std=0.02)
|
685 |
if m.bias is not None:
|
|
|
691 |
def get_num_layers(self):
|
692 |
return len(self.blocks)
|
693 |
|
694 |
+
def lock(self, unlocked_groups=0, *_, **__):
|
695 |
assert (
|
696 |
unlocked_groups == 0
|
697 |
), 'partial locking not currently supported for this model'
|
|
|
709 |
def get_classifier(self):
|
710 |
return self.head
|
711 |
|
712 |
+
def reset_classifier(self, num_classes, *_, **__):
|
713 |
self.num_classes = num_classes
|
714 |
self.head = (
|
715 |
nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
hf_model.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import re
|
2 |
-
from typing import Dict, Optional
|
3 |
-
|
4 |
import torch
|
5 |
import torch.nn as nn
|
6 |
from transformers import AutoConfig, AutoModel, PretrainedConfig
|
@@ -10,9 +9,6 @@ from transformers.modeling_outputs import (
|
|
10 |
BaseModelOutputWithPoolingAndCrossAttentions,
|
11 |
)
|
12 |
|
13 |
-
"""
|
14 |
-
HF architecture mapping
|
15 |
-
"""
|
16 |
|
17 |
_HF_ARCH_DICT = {
|
18 |
# https://huggingface.co/docs/transformers/model_doc/roberta#roberta
|
@@ -41,22 +37,6 @@ _HF_ARCH_DICT = {
|
|
41 |
},
|
42 |
'pooler': 'mean_pooler',
|
43 |
},
|
44 |
-
# https://huggingface.co/docs/transformers/model_doc/mt5#mt5
|
45 |
-
'mt5': {
|
46 |
-
'config_names': {
|
47 |
-
# unlimited seqlen
|
48 |
-
# https://github.com/google-research/text-to-text-transfer-transformer/issues/273
|
49 |
-
# https://github.com/huggingface/transformers/blob/v4.24.0/src/transformers/models/t5/modeling_t5.py#L374
|
50 |
-
'context_length': '',
|
51 |
-
'vocab_size': 'vocab_size',
|
52 |
-
'width': 'd_model',
|
53 |
-
'heads': 'num_heads',
|
54 |
-
'layers': 'num_layers',
|
55 |
-
'layer_attr': 'block',
|
56 |
-
'token_embeddings_attr': 'embed_tokens',
|
57 |
-
},
|
58 |
-
'pooler': 'mean_pooler',
|
59 |
-
},
|
60 |
# https://huggingface.co/docs/transformers/model_doc/bert
|
61 |
'bert': {
|
62 |
'config_names': {
|
@@ -68,24 +48,8 @@ _HF_ARCH_DICT = {
|
|
68 |
},
|
69 |
'pooler': 'cls_pooler',
|
70 |
},
|
71 |
-
# https://huggingface.co/docs/transformers/model_doc/m2m_100
|
72 |
-
'm2m_100': {
|
73 |
-
'config_names': {
|
74 |
-
'context_length': 'max_position_embeddings',
|
75 |
-
'vocab_size': 'vocab_size',
|
76 |
-
'width': 'd_model',
|
77 |
-
'heads': 'encoder_attention_heads',
|
78 |
-
'layers': 'encoder_layers',
|
79 |
-
},
|
80 |
-
'pooler': 'cls_pooler',
|
81 |
-
},
|
82 |
}
|
83 |
|
84 |
-
|
85 |
-
"""
|
86 |
-
Pooling functions
|
87 |
-
"""
|
88 |
-
|
89 |
_POOLERS = {}
|
90 |
|
91 |
|
@@ -101,8 +65,6 @@ def register_pooler(cls):
|
|
101 |
|
102 |
@register_pooler
|
103 |
class MeanPooler(nn.Module):
|
104 |
-
"""Mean pooling"""
|
105 |
-
|
106 |
@staticmethod
|
107 |
def forward(x: BaseModelOutput, attention_mask: torch.Tensor):
|
108 |
masked_output = x.last_hidden_state * attention_mask.unsqueeze(-1)
|
@@ -111,10 +73,6 @@ class MeanPooler(nn.Module):
|
|
111 |
|
112 |
@register_pooler
|
113 |
class MaxPooler(nn.Module):
|
114 |
-
"""
|
115 |
-
Max pooling
|
116 |
-
"""
|
117 |
-
|
118 |
@staticmethod
|
119 |
def forward(x: BaseModelOutput, attention_mask: torch.Tensor):
|
120 |
masked_output = x.last_hidden_state.masked_fill(
|
@@ -125,11 +83,7 @@ class MaxPooler(nn.Module):
|
|
125 |
|
126 |
@register_pooler
|
127 |
class ClsPooler(nn.Module):
|
128 |
-
|
129 |
-
CLS token pooling
|
130 |
-
"""
|
131 |
-
|
132 |
-
def __init__(self, use_pooler_output=True):
|
133 |
super().__init__()
|
134 |
self.cls_token_position = 0
|
135 |
self.use_pooler_output = use_pooler_output
|
@@ -147,15 +101,9 @@ class ClsPooler(nn.Module):
|
|
147 |
and (x.pooler_output is not None)
|
148 |
):
|
149 |
return x.pooler_output
|
150 |
-
|
151 |
return x.last_hidden_state[:, self.cls_token_position, :]
|
152 |
|
153 |
|
154 |
-
"""
|
155 |
-
HF text model
|
156 |
-
"""
|
157 |
-
|
158 |
-
|
159 |
class HFTextEncoder(nn.Module):
|
160 |
output_tokens: torch.jit.Final[bool]
|
161 |
|
@@ -171,21 +119,21 @@ class HFTextEncoder(nn.Module):
|
|
171 |
output_tokens: bool = False,
|
172 |
trust_remote_code: bool = False,
|
173 |
revision: Optional[str] = None,
|
|
|
174 |
model_config_kwargs: Optional[Dict] = None,
|
175 |
):
|
176 |
super().__init__()
|
177 |
self.output_tokens = output_tokens
|
178 |
self.output_dim = output_dim
|
179 |
|
180 |
-
# TODO: find better way to get this information
|
181 |
-
uses_transformer_pooler = pooler_type == 'cls_pooler'
|
182 |
model_config_kwargs = model_config_kwargs or {}
|
183 |
|
184 |
if config is None:
|
185 |
self.config = AutoConfig.from_pretrained(
|
186 |
model_name_or_path,
|
187 |
trust_remote_code=trust_remote_code,
|
188 |
-
|
|
|
189 |
)
|
190 |
self.config.update(model_config_kwargs)
|
191 |
create_func, model_args = (
|
@@ -193,34 +141,40 @@ class HFTextEncoder(nn.Module):
|
|
193 |
if pretrained
|
194 |
else (AutoModel.from_config, self.config)
|
195 |
)
|
196 |
-
# TODO: do all model configs have this attribute?
|
197 |
-
# PretrainedConfig does so yes??
|
198 |
if (
|
199 |
hasattr(self.config, 'is_encoder_decoder')
|
200 |
and self.config.is_encoder_decoder
|
201 |
):
|
202 |
-
self.transformer = create_func(
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
self.transformer = self.transformer.encoder
|
204 |
else:
|
205 |
self.transformer = create_func(
|
206 |
model_args,
|
207 |
trust_remote_code=trust_remote_code,
|
208 |
-
|
209 |
-
|
|
|
|
|
210 |
)
|
211 |
else:
|
212 |
self.config = config
|
213 |
self.config.update(model_config_kwargs)
|
214 |
-
self.transformer = AutoModel.from_config(
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
# need to verify valid across all models
|
221 |
self.vocab_size = getattr(self.config, 'vocab_size', 0)
|
222 |
self.context_length = getattr(self.config, 'max_position_embeddings', 0)
|
223 |
|
|
|
224 |
self.pooler = _POOLERS[pooler_type]()
|
225 |
|
226 |
d_model = getattr(
|
@@ -228,7 +182,7 @@ class HFTextEncoder(nn.Module):
|
|
228 |
)
|
229 |
if (d_model == output_dim) and (proj_type is None): # do we always need a proj?
|
230 |
self.proj = nn.Identity()
|
231 |
-
elif proj_type == 'linear':
|
232 |
self.proj = nn.Linear(d_model, output_dim, bias=proj_bias)
|
233 |
elif proj_type == 'mlp':
|
234 |
hidden_size = (d_model + output_dim) // 2
|
@@ -238,27 +192,52 @@ class HFTextEncoder(nn.Module):
|
|
238 |
nn.Linear(hidden_size, output_dim, bias=proj_bias),
|
239 |
)
|
240 |
|
241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
attn_mask = (x != self.config.pad_token_id).long()
|
243 |
-
|
|
|
|
|
|
|
244 |
pooled_out = self.pooler(out, attn_mask)
|
245 |
projected = self.proj(pooled_out)
|
246 |
-
|
247 |
-
seq_len = out.last_hidden_state.shape[1]
|
248 |
tokens = (
|
249 |
out.last_hidden_state[
|
250 |
-
:, torch.arange(
|
251 |
]
|
252 |
if isinstance(self.pooler, ClsPooler)
|
253 |
else out.last_hidden_state
|
254 |
)
|
255 |
-
|
256 |
if self.output_tokens:
|
257 |
return projected, tokens
|
258 |
return projected
|
259 |
|
260 |
def lock(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True):
|
261 |
-
if not unlocked_layers:
|
262 |
for n, p in self.transformer.named_parameters():
|
263 |
p.requires_grad = (
|
264 |
(not freeze_layer_norm) if 'LayerNorm' in n.split('.') else False
|
@@ -287,11 +266,3 @@ class HFTextEncoder(nn.Module):
|
|
287 |
p.requires_grad = (
|
288 |
(not freeze_layer_norm) if 'LayerNorm' in n.split('.') else False
|
289 |
)
|
290 |
-
|
291 |
-
@torch.jit.ignore
|
292 |
-
def set_grad_checkpointing(self, _=True):
|
293 |
-
self.transformer.gradient_checkpointing_enable()
|
294 |
-
|
295 |
-
def init_parameters(self):
|
296 |
-
pass
|
297 |
-
|
|
|
1 |
import re
|
2 |
+
from typing import Dict, Optional
|
|
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
from transformers import AutoConfig, AutoModel, PretrainedConfig
|
|
|
9 |
BaseModelOutputWithPoolingAndCrossAttentions,
|
10 |
)
|
11 |
|
|
|
|
|
|
|
12 |
|
13 |
_HF_ARCH_DICT = {
|
14 |
# https://huggingface.co/docs/transformers/model_doc/roberta#roberta
|
|
|
37 |
},
|
38 |
'pooler': 'mean_pooler',
|
39 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
# https://huggingface.co/docs/transformers/model_doc/bert
|
41 |
'bert': {
|
42 |
'config_names': {
|
|
|
48 |
},
|
49 |
'pooler': 'cls_pooler',
|
50 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
}
|
52 |
|
|
|
|
|
|
|
|
|
|
|
53 |
_POOLERS = {}
|
54 |
|
55 |
|
|
|
65 |
|
66 |
@register_pooler
|
67 |
class MeanPooler(nn.Module):
|
|
|
|
|
68 |
@staticmethod
|
69 |
def forward(x: BaseModelOutput, attention_mask: torch.Tensor):
|
70 |
masked_output = x.last_hidden_state * attention_mask.unsqueeze(-1)
|
|
|
73 |
|
74 |
@register_pooler
|
75 |
class MaxPooler(nn.Module):
|
|
|
|
|
|
|
|
|
76 |
@staticmethod
|
77 |
def forward(x: BaseModelOutput, attention_mask: torch.Tensor):
|
78 |
masked_output = x.last_hidden_state.masked_fill(
|
|
|
83 |
|
84 |
@register_pooler
|
85 |
class ClsPooler(nn.Module):
|
86 |
+
def __init__(self, use_pooler_output: bool = True):
|
|
|
|
|
|
|
|
|
87 |
super().__init__()
|
88 |
self.cls_token_position = 0
|
89 |
self.use_pooler_output = use_pooler_output
|
|
|
101 |
and (x.pooler_output is not None)
|
102 |
):
|
103 |
return x.pooler_output
|
|
|
104 |
return x.last_hidden_state[:, self.cls_token_position, :]
|
105 |
|
106 |
|
|
|
|
|
|
|
|
|
|
|
107 |
class HFTextEncoder(nn.Module):
|
108 |
output_tokens: torch.jit.Final[bool]
|
109 |
|
|
|
119 |
output_tokens: bool = False,
|
120 |
trust_remote_code: bool = False,
|
121 |
revision: Optional[str] = None,
|
122 |
+
code_revision: Optional[str] = None,
|
123 |
model_config_kwargs: Optional[Dict] = None,
|
124 |
):
|
125 |
super().__init__()
|
126 |
self.output_tokens = output_tokens
|
127 |
self.output_dim = output_dim
|
128 |
|
|
|
|
|
129 |
model_config_kwargs = model_config_kwargs or {}
|
130 |
|
131 |
if config is None:
|
132 |
self.config = AutoConfig.from_pretrained(
|
133 |
model_name_or_path,
|
134 |
trust_remote_code=trust_remote_code,
|
135 |
+
revision=revision,
|
136 |
+
code_revision=code_revision,
|
137 |
)
|
138 |
self.config.update(model_config_kwargs)
|
139 |
create_func, model_args = (
|
|
|
141 |
if pretrained
|
142 |
else (AutoModel.from_config, self.config)
|
143 |
)
|
|
|
|
|
144 |
if (
|
145 |
hasattr(self.config, 'is_encoder_decoder')
|
146 |
and self.config.is_encoder_decoder
|
147 |
):
|
148 |
+
self.transformer = create_func(
|
149 |
+
model_args,
|
150 |
+
trust_remote_code=trust_remote_code,
|
151 |
+
revision=revision,
|
152 |
+
code_revision=code_revision,
|
153 |
+
**model_config_kwargs,
|
154 |
+
)
|
155 |
self.transformer = self.transformer.encoder
|
156 |
else:
|
157 |
self.transformer = create_func(
|
158 |
model_args,
|
159 |
trust_remote_code=trust_remote_code,
|
160 |
+
revision=revision,
|
161 |
+
add_pooling_layer=False,
|
162 |
+
code_revision=code_revision,
|
163 |
+
**model_config_kwargs,
|
164 |
)
|
165 |
else:
|
166 |
self.config = config
|
167 |
self.config.update(model_config_kwargs)
|
168 |
+
self.transformer = AutoModel.from_config(
|
169 |
+
self.config,
|
170 |
+
trust_remote_code=trust_remote_code,
|
171 |
+
revision=revision,
|
172 |
+
code_revision=code_revision,
|
173 |
+
)
|
|
|
174 |
self.vocab_size = getattr(self.config, 'vocab_size', 0)
|
175 |
self.context_length = getattr(self.config, 'max_position_embeddings', 0)
|
176 |
|
177 |
+
pooler_type = pooler_type or _HF_ARCH_DICT[self.config.model_type]['pooler']
|
178 |
self.pooler = _POOLERS[pooler_type]()
|
179 |
|
180 |
d_model = getattr(
|
|
|
182 |
)
|
183 |
if (d_model == output_dim) and (proj_type is None): # do we always need a proj?
|
184 |
self.proj = nn.Identity()
|
185 |
+
elif (d_model != output_dim) or proj_type == 'linear':
|
186 |
self.proj = nn.Linear(d_model, output_dim, bias=proj_bias)
|
187 |
elif proj_type == 'mlp':
|
188 |
hidden_size = (d_model + output_dim) // 2
|
|
|
192 |
nn.Linear(hidden_size, output_dim, bias=proj_bias),
|
193 |
)
|
194 |
|
195 |
+
self._task_instructions = {}
|
196 |
+
self._lora_adaptation_map = {}
|
197 |
+
self._supports_task_instructions = False
|
198 |
+
self._supports_lora = False
|
199 |
+
if (
|
200 |
+
hasattr(self.transformer, '_adaptation_map')
|
201 |
+
and len(self.transformer._adaptation_map) > 0
|
202 |
+
):
|
203 |
+
self._lora_adaptation_map = self.transformer._adaptation_map
|
204 |
+
self._supports_lora = True
|
205 |
+
if (
|
206 |
+
hasattr(self.transformer, '_task_instructions')
|
207 |
+
and len(self.transformer._task_instructions) > 0
|
208 |
+
):
|
209 |
+
self._task_instructions = self.transformer._task_instructions
|
210 |
+
self._supports_task_instructions = True
|
211 |
+
|
212 |
+
@torch.jit.ignore
|
213 |
+
def set_grad_checkpointing(self, _=True):
|
214 |
+
self.transformer.gradient_checkpointing_enable()
|
215 |
+
|
216 |
+
def init_parameters(self):
|
217 |
+
pass
|
218 |
+
|
219 |
+
def forward(self, x: torch.Tensor, adapter_mask: Optional[torch.Tensor] = None):
|
220 |
attn_mask = (x != self.config.pad_token_id).long()
|
221 |
+
kwargs = {}
|
222 |
+
if adapter_mask is not None:
|
223 |
+
kwargs['adapter_mask'] = adapter_mask
|
224 |
+
out = self.transformer(input_ids=x, attention_mask=attn_mask, **kwargs)
|
225 |
pooled_out = self.pooler(out, attn_mask)
|
226 |
projected = self.proj(pooled_out)
|
227 |
+
seqlen = out.last_hidden_state.shape[1]
|
|
|
228 |
tokens = (
|
229 |
out.last_hidden_state[
|
230 |
+
:, torch.arange(seqlen) != self.pooler.cls_token_position, :
|
231 |
]
|
232 |
if isinstance(self.pooler, ClsPooler)
|
233 |
else out.last_hidden_state
|
234 |
)
|
|
|
235 |
if self.output_tokens:
|
236 |
return projected, tokens
|
237 |
return projected
|
238 |
|
239 |
def lock(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True):
|
240 |
+
if not unlocked_layers:
|
241 |
for n, p in self.transformer.named_parameters():
|
242 |
p.requires_grad = (
|
243 |
(not freeze_layer_norm) if 'LayerNorm' in n.split('.') else False
|
|
|
266 |
p.requires_grad = (
|
267 |
(not freeze_layer_norm) if 'LayerNorm' in n.split('.') else False
|
268 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modeling_clip.py
CHANGED
@@ -14,6 +14,7 @@ import requests
|
|
14 |
import torch
|
15 |
import torch.nn.functional as f
|
16 |
import torch.utils.checkpoint
|
|
|
17 |
from torch import nn
|
18 |
from transformers import (
|
19 |
AutoImageProcessor,
|
@@ -35,13 +36,12 @@ try:
|
|
35 |
|
36 |
has_tqdm = True
|
37 |
except ImportError:
|
|
|
38 |
has_tqdm = False
|
39 |
|
40 |
from .configuration_clip import JinaCLIPConfig, JinaCLIPTextConfig, JinaCLIPVisionConfig
|
41 |
from .eva_model import EVAVisionTransformer
|
42 |
from .hf_model import HFTextEncoder
|
43 |
-
|
44 |
-
# needed for HF to correctly import in cache
|
45 |
from .rope_embeddings import VisionRotaryEmbeddingFast # noqa: F401
|
46 |
from .transform import ( # noqa: F401
|
47 |
OPENAI_DATASET_MEAN,
|
@@ -157,6 +157,9 @@ class JinaCLIPTextModel(JinaCLIPPreTrainedModel):
|
|
157 |
self,
|
158 |
input_ids: Union[None, torch.Tensor, BatchEncoding] = None,
|
159 |
return_dict: Optional[bool] = None,
|
|
|
|
|
|
|
160 |
*_,
|
161 |
**__,
|
162 |
) -> Union[Tuple[Optional[torch.FloatTensor], ...], CLIPTextModelOutput]:
|
@@ -164,7 +167,12 @@ class JinaCLIPTextModel(JinaCLIPPreTrainedModel):
|
|
164 |
return_dict if return_dict is not None else self.config.use_return_dict
|
165 |
)
|
166 |
x = input_ids.input_ids if isinstance(input_ids, BatchEncoding) else input_ids
|
167 |
-
feats = self.text_model(
|
|
|
|
|
|
|
|
|
|
|
168 |
out = CLIPTextModelOutput(text_embeds=feats)
|
169 |
return out if return_dict else out.to_tuple()
|
170 |
|
@@ -220,7 +228,9 @@ class JinaCLIPModel(JinaCLIPPreTrainedModel):
|
|
220 |
vision_config = config.vision_config
|
221 |
|
222 |
if config.use_text_flash_attn is not None:
|
223 |
-
text_config.hf_model_config_kwargs['use_flash_attn'] =
|
|
|
|
|
224 |
if config.use_vision_xformers is not None:
|
225 |
vision_config.x_attention = config.use_vision_xformers
|
226 |
|
@@ -228,13 +238,11 @@ class JinaCLIPModel(JinaCLIPPreTrainedModel):
|
|
228 |
self.projection_dim = config.projection_dim
|
229 |
self.text_embed_dim = text_config.embed_dim
|
230 |
self.vision_embed_dim = vision_config.embed_dim
|
231 |
-
|
232 |
self.text_model = _build_text_tower(text_config)
|
233 |
self.vision_model = _build_vision_tower(vision_config)
|
234 |
self.logit_scale = nn.Parameter(
|
235 |
torch.tensor(self.config.logit_scale_init_value)
|
236 |
)
|
237 |
-
|
238 |
if self.add_projections:
|
239 |
self.visual_projection = nn.Linear(
|
240 |
self.vision_embed_dim, self.projection_dim, bias=False
|
@@ -267,11 +275,12 @@ class JinaCLIPModel(JinaCLIPPreTrainedModel):
|
|
267 |
def get_text_features(
|
268 |
self,
|
269 |
input_ids: Union[None, torch.Tensor, BatchEncoding] = None,
|
|
|
270 |
*_,
|
271 |
**__,
|
272 |
) -> torch.FloatTensor:
|
273 |
x = input_ids.input_ids if isinstance(input_ids, BatchEncoding) else input_ids
|
274 |
-
return self.text_projection(self.text_model(x=x))
|
275 |
|
276 |
def get_image_features(
|
277 |
self,
|
@@ -286,24 +295,24 @@ class JinaCLIPModel(JinaCLIPPreTrainedModel):
|
|
286 |
)
|
287 |
return self.visual_projection(self.vision_model(x=x))
|
288 |
|
289 |
-
def
|
290 |
if not self.config.matryoshka_dimensions:
|
291 |
logger.warning(
|
292 |
-
|
293 |
-
|
294 |
-
return embeddings
|
295 |
-
elif truncate_dim in self.config.matryoshka_dimensions:
|
296 |
-
return embeddings[:, :truncate_dim]
|
297 |
-
else:
|
298 |
-
raise ValueError(
|
299 |
-
f"The provided `truncate_dim` value of {truncate_dim} is not supported. "
|
300 |
-
f"Supported dimensions are {self.config.matryoshka_dimensions}."
|
301 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
|
303 |
@torch.inference_mode()
|
304 |
-
def
|
305 |
self,
|
306 |
-
|
307 |
batch_size: int = 32,
|
308 |
show_progress_bar: Optional[bool] = None,
|
309 |
convert_to_numpy: bool = True,
|
@@ -311,122 +320,129 @@ class JinaCLIPModel(JinaCLIPPreTrainedModel):
|
|
311 |
device: Optional[torch.device] = None,
|
312 |
normalize_embeddings: bool = True,
|
313 |
truncate_dim: Optional[int] = None,
|
314 |
-
**tokenizer_kwargs,
|
315 |
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
|
316 |
"""
|
317 |
-
Computes
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
"""
|
348 |
-
|
|
|
349 |
self.eval()
|
350 |
-
all_embeddings = []
|
351 |
|
352 |
-
self.
|
|
|
353 |
|
354 |
if show_progress_bar is None:
|
355 |
show_progress_bar = (
|
356 |
logger.getEffectiveLevel() == logging.INFO
|
357 |
or logger.getEffectiveLevel() == logging.DEBUG
|
358 |
)
|
359 |
-
|
360 |
if convert_to_tensor:
|
361 |
convert_to_numpy = False
|
362 |
|
363 |
-
|
364 |
-
if isinstance(
|
365 |
-
|
366 |
-
|
367 |
|
368 |
if device is not None:
|
369 |
self.to(device)
|
370 |
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
tokenizer_kwargs['padding'] = tokenizer_kwargs.get('padding', True)
|
376 |
-
tokenizer_kwargs['max_length'] = tokenizer_kwargs.get('max_length', 512)
|
377 |
-
tokenizer_kwargs['truncation'] = tokenizer_kwargs.get('truncation', True)
|
378 |
|
379 |
if has_tqdm:
|
380 |
range_iter = trange(
|
381 |
0,
|
382 |
-
len(
|
383 |
batch_size,
|
384 |
desc='Encoding',
|
385 |
disable=not show_progress_bar,
|
386 |
)
|
387 |
else:
|
388 |
-
range_iter = range(0, len(
|
389 |
|
390 |
truncate_dim = truncate_dim or self.config.truncate_dim
|
|
|
391 |
for i in range_iter:
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
397 |
|
398 |
-
|
|
|
|
|
399 |
|
400 |
if truncate_dim:
|
401 |
embeddings = self.truncate_embeddings(embeddings, truncate_dim)
|
402 |
if normalize_embeddings:
|
403 |
-
embeddings =
|
404 |
if convert_to_numpy:
|
405 |
embeddings = embeddings.cpu()
|
|
|
406 |
all_embeddings.extend(embeddings)
|
407 |
|
408 |
-
all_embeddings = [all_embeddings[idx] for idx in
|
409 |
|
410 |
if convert_to_tensor:
|
411 |
all_embeddings = torch.stack(all_embeddings)
|
412 |
elif convert_to_numpy:
|
413 |
-
all_embeddings = np.asarray(
|
|
|
|
|
414 |
|
415 |
-
if
|
416 |
all_embeddings = all_embeddings[0]
|
417 |
|
418 |
-
self.train(
|
419 |
return all_embeddings
|
420 |
|
421 |
-
def decode_data_image(data_image_str):
|
422 |
-
header, data = data_image_str.split(',', 1)
|
423 |
-
image_data = base64.b64decode(data)
|
424 |
-
return Image.open(BytesIO(image_data))
|
425 |
-
|
426 |
@torch.inference_mode()
|
427 |
-
def
|
428 |
self,
|
429 |
-
|
|
|
430 |
batch_size: int = 32,
|
431 |
show_progress_bar: Optional[bool] = None,
|
432 |
convert_to_numpy: bool = True,
|
@@ -434,129 +450,153 @@ class JinaCLIPModel(JinaCLIPPreTrainedModel):
|
|
434 |
device: Optional[torch.device] = None,
|
435 |
normalize_embeddings: bool = True,
|
436 |
truncate_dim: Optional[int] = None,
|
|
|
437 |
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
|
438 |
"""
|
439 |
-
Computes
|
440 |
-
|
441 |
Args:
|
442 |
-
|
443 |
-
|
|
|
|
|
|
|
|
|
444 |
batch_size(`int`, *optional*, defaults to 32):
|
445 |
Batch size for the computation
|
446 |
show_progress_bar(`bool`, *optional*, defaults to None):
|
447 |
-
Show a progress bar when encoding
|
448 |
-
|
449 |
-
`logger.level == logging.
|
450 |
convert_to_numpy(`bool`, *optional*, defaults to True):
|
451 |
-
If true, the output is a list of numpy vectors.
|
452 |
-
|
453 |
convert_to_tensor(`bool`, *optional*, defaults to False):
|
454 |
-
If true, you get one large tensor as return.
|
455 |
-
|
456 |
device(`torch.device`, *optional*, defaults to None):
|
457 |
Which torch.device to use for the computation
|
458 |
normalize_embeddings(`bool`, *optional*, defaults to False):
|
459 |
If set to true, returned vectors will have length 1. In that case,
|
460 |
the faster dot-product (util.dot_score) instead of cosine similarity
|
461 |
-
can be used
|
462 |
truncate_dim(`int`, *optional*, defaults to None):
|
463 |
-
The dimension to truncate sentence embeddings to. `None`
|
|
|
|
|
|
|
464 |
Returns:
|
465 |
-
By default, a list of tensors is returned.
|
466 |
-
If
|
467 |
-
If convert_to_numpy, a numpy matrix is returned.
|
468 |
"""
|
469 |
-
|
470 |
-
is_training = self.training
|
471 |
self.eval()
|
472 |
-
|
473 |
-
self.preprocess = self.get_preprocess()
|
474 |
all_embeddings = []
|
475 |
-
|
|
|
476 |
if show_progress_bar is None:
|
477 |
show_progress_bar = (
|
478 |
logger.getEffectiveLevel() == logging.INFO
|
479 |
or logger.getEffectiveLevel() == logging.DEBUG
|
480 |
)
|
481 |
-
|
482 |
if convert_to_tensor:
|
483 |
convert_to_numpy = False
|
484 |
-
|
485 |
-
|
486 |
-
if isinstance(
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
if device is not None:
|
491 |
self.to(device)
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
|
|
|
|
|
|
|
|
497 |
if has_tqdm:
|
498 |
range_iter = trange(
|
499 |
0,
|
500 |
-
len(
|
501 |
batch_size,
|
502 |
desc='Encoding',
|
503 |
disable=not show_progress_bar,
|
504 |
)
|
505 |
else:
|
506 |
-
range_iter = range(0, len(
|
507 |
-
|
508 |
-
from PIL import Image
|
509 |
|
510 |
truncate_dim = truncate_dim or self.config.truncate_dim
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
511 |
for i in range_iter:
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
image = decode_data_image(img).convert('RGB')
|
522 |
-
else:
|
523 |
-
image = Image.open(img).convert('RGB')
|
524 |
-
elif isinstance(img, Image.Image):
|
525 |
-
image = img.convert('RGB')
|
526 |
-
else:
|
527 |
-
raise ValueError("Unsupported image format")
|
528 |
-
|
529 |
-
processed_inputs.append(image)
|
530 |
-
|
531 |
-
processed_inputs = self.preprocess(processed_inputs)
|
532 |
-
processed_inputs = processed_inputs.to(self.device)
|
533 |
-
embeddings = self.get_image_features(processed_inputs)
|
534 |
-
|
535 |
if truncate_dim:
|
536 |
embeddings = self.truncate_embeddings(embeddings, truncate_dim)
|
537 |
if normalize_embeddings:
|
538 |
-
embeddings =
|
539 |
if convert_to_numpy:
|
540 |
embeddings = embeddings.cpu()
|
541 |
all_embeddings.extend(embeddings)
|
542 |
-
|
543 |
-
all_embeddings = [all_embeddings[idx] for idx in
|
544 |
-
|
545 |
if convert_to_tensor:
|
546 |
all_embeddings = torch.stack(all_embeddings)
|
547 |
elif convert_to_numpy:
|
548 |
-
all_embeddings = np.asarray(
|
549 |
-
|
550 |
-
|
|
|
551 |
all_embeddings = all_embeddings[0]
|
552 |
-
|
553 |
-
self.train(
|
554 |
return all_embeddings
|
555 |
|
556 |
def forward(
|
557 |
self,
|
558 |
input_ids: Union[None, torch.Tensor, BatchEncoding] = None,
|
559 |
pixel_values: Union[None, torch.FloatTensor, BatchFeature] = None,
|
|
|
560 |
return_dict: Optional[bool] = None,
|
561 |
return_loss: Optional[bool] = None,
|
562 |
*_,
|
@@ -566,8 +606,9 @@ class JinaCLIPModel(JinaCLIPPreTrainedModel):
|
|
566 |
return_dict if return_dict is not None else self.config.use_return_dict
|
567 |
)
|
568 |
image_embeds = self.get_image_features(pixel_values=pixel_values)
|
569 |
-
text_embeds = self.get_text_features(
|
570 |
-
|
|
|
571 |
# normalized features
|
572 |
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
573 |
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
|
|
14 |
import torch
|
15 |
import torch.nn.functional as f
|
16 |
import torch.utils.checkpoint
|
17 |
+
from PIL import Image
|
18 |
from torch import nn
|
19 |
from transformers import (
|
20 |
AutoImageProcessor,
|
|
|
36 |
|
37 |
has_tqdm = True
|
38 |
except ImportError:
|
39 |
+
trange = None
|
40 |
has_tqdm = False
|
41 |
|
42 |
from .configuration_clip import JinaCLIPConfig, JinaCLIPTextConfig, JinaCLIPVisionConfig
|
43 |
from .eva_model import EVAVisionTransformer
|
44 |
from .hf_model import HFTextEncoder
|
|
|
|
|
45 |
from .rope_embeddings import VisionRotaryEmbeddingFast # noqa: F401
|
46 |
from .transform import ( # noqa: F401
|
47 |
OPENAI_DATASET_MEAN,
|
|
|
157 |
self,
|
158 |
input_ids: Union[None, torch.Tensor, BatchEncoding] = None,
|
159 |
return_dict: Optional[bool] = None,
|
160 |
+
use_lora: bool = False,
|
161 |
+
adapter_mask: Optional[torch.Tensor] = None,
|
162 |
+
task: Optional[str] = None,
|
163 |
*_,
|
164 |
**__,
|
165 |
) -> Union[Tuple[Optional[torch.FloatTensor], ...], CLIPTextModelOutput]:
|
|
|
167 |
return_dict if return_dict is not None else self.config.use_return_dict
|
168 |
)
|
169 |
x = input_ids.input_ids if isinstance(input_ids, BatchEncoding) else input_ids
|
170 |
+
feats = self.text_model(
|
171 |
+
x=x,
|
172 |
+
use_lora=use_lora,
|
173 |
+
adapter_mask=adapter_mask,
|
174 |
+
task=task,
|
175 |
+
)
|
176 |
out = CLIPTextModelOutput(text_embeds=feats)
|
177 |
return out if return_dict else out.to_tuple()
|
178 |
|
|
|
228 |
vision_config = config.vision_config
|
229 |
|
230 |
if config.use_text_flash_attn is not None:
|
231 |
+
text_config.hf_model_config_kwargs['use_flash_attn'] = (
|
232 |
+
config.use_text_flash_attn
|
233 |
+
)
|
234 |
if config.use_vision_xformers is not None:
|
235 |
vision_config.x_attention = config.use_vision_xformers
|
236 |
|
|
|
238 |
self.projection_dim = config.projection_dim
|
239 |
self.text_embed_dim = text_config.embed_dim
|
240 |
self.vision_embed_dim = vision_config.embed_dim
|
|
|
241 |
self.text_model = _build_text_tower(text_config)
|
242 |
self.vision_model = _build_vision_tower(vision_config)
|
243 |
self.logit_scale = nn.Parameter(
|
244 |
torch.tensor(self.config.logit_scale_init_value)
|
245 |
)
|
|
|
246 |
if self.add_projections:
|
247 |
self.visual_projection = nn.Linear(
|
248 |
self.vision_embed_dim, self.projection_dim, bias=False
|
|
|
275 |
def get_text_features(
|
276 |
self,
|
277 |
input_ids: Union[None, torch.Tensor, BatchEncoding] = None,
|
278 |
+
adapter_mask: Optional[torch.Tensor] = None,
|
279 |
*_,
|
280 |
**__,
|
281 |
) -> torch.FloatTensor:
|
282 |
x = input_ids.input_ids if isinstance(input_ids, BatchEncoding) else input_ids
|
283 |
+
return self.text_projection(self.text_model(x=x, adapter_mask=adapter_mask))
|
284 |
|
285 |
def get_image_features(
|
286 |
self,
|
|
|
295 |
)
|
296 |
return self.visual_projection(self.vision_model(x=x))
|
297 |
|
298 |
+
def _truncate_embeddings(self, embeddings: torch.Tensor, truncate_dim: int):
|
299 |
if not self.config.matryoshka_dimensions:
|
300 |
logger.warning(
|
301 |
+
'Model is not trained using Matryoshka Representation Learning, '
|
302 |
+
'truncating embeddings will not work optimally.'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
)
|
304 |
+
return embeddings[:, :truncate_dim]
|
305 |
+
|
306 |
+
@staticmethod
|
307 |
+
def _decode_image_data(image_data_str: str) -> Image:
|
308 |
+
header, data = image_data_str.split(',', 1)
|
309 |
+
image_data = base64.b64decode(data)
|
310 |
+
return Image.open(BytesIO(image_data))
|
311 |
|
312 |
@torch.inference_mode()
|
313 |
+
def encode_image(
|
314 |
self,
|
315 |
+
images: Union[str, List[Union[str, 'Image.Image']]],
|
316 |
batch_size: int = 32,
|
317 |
show_progress_bar: Optional[bool] = None,
|
318 |
convert_to_numpy: bool = True,
|
|
|
320 |
device: Optional[torch.device] = None,
|
321 |
normalize_embeddings: bool = True,
|
322 |
truncate_dim: Optional[int] = None,
|
|
|
323 |
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
|
324 |
"""
|
325 |
+
Computes image embeddings
|
326 |
+
|
327 |
+
Args:
|
328 |
+
images(`str` or `List[Union[str, Image.Image]]`):
|
329 |
+
Image paths, URLs, PIL images, or data:image/ strings to be encoded
|
330 |
+
batch_size(`int`, *optional*, defaults to 32):
|
331 |
+
Batch size for the computation
|
332 |
+
show_progress_bar(`bool`, *optional*, defaults to None):
|
333 |
+
Show a progress bar when encoding images. If set to None, progress bar
|
334 |
+
is only shown when `logger.level == logging.INFO` or
|
335 |
+
`logger.level == logging.DEBUG`
|
336 |
+
convert_to_numpy(`bool`, *optional*, defaults to True):
|
337 |
+
If true, the output is a list of numpy vectors. Else, it is a list of
|
338 |
+
pytorch tensors
|
339 |
+
convert_to_tensor(`bool`, *optional*, defaults to False):
|
340 |
+
If true, you get one large tensor as return. Overwrites any setting
|
341 |
+
from convert_to_numpy
|
342 |
+
device(`torch.device`, *optional*, defaults to None):
|
343 |
+
Which torch.device to use for the computation
|
344 |
+
normalize_embeddings(`bool`, *optional*, defaults to False):
|
345 |
+
If set to true, returned vectors will have length 1. In that case,
|
346 |
+
the faster dot-product (util.dot_score) instead of cosine similarity
|
347 |
+
can be used
|
348 |
+
truncate_dim(`int`, *optional*, defaults to None):
|
349 |
+
The dimension to truncate sentence embeddings to. If set to `None`
|
350 |
+
no truncation is performed
|
351 |
+
|
352 |
+
Returns:
|
353 |
+
By default, a list of tensors is returned. If convert_to_tensor, a stacked
|
354 |
+
tensor is returned. If convert_to_numpy, a numpy matrix is returned
|
355 |
"""
|
356 |
+
|
357 |
+
_is_training = self.training
|
358 |
self.eval()
|
|
|
359 |
|
360 |
+
self.preprocess = self.get_preprocess()
|
361 |
+
all_embeddings = []
|
362 |
|
363 |
if show_progress_bar is None:
|
364 |
show_progress_bar = (
|
365 |
logger.getEffectiveLevel() == logging.INFO
|
366 |
or logger.getEffectiveLevel() == logging.DEBUG
|
367 |
)
|
|
|
368 |
if convert_to_tensor:
|
369 |
convert_to_numpy = False
|
370 |
|
371 |
+
_input_was_single_img = False
|
372 |
+
if isinstance(images, str) or not hasattr(images, '__len__'):
|
373 |
+
images = [images]
|
374 |
+
_input_was_single_img = True
|
375 |
|
376 |
if device is not None:
|
377 |
self.to(device)
|
378 |
|
379 |
+
_permutation = np.argsort([-len(str(i)) for i in images])
|
380 |
+
_inverse_permutation = np.argsort(_permutation)
|
381 |
+
images = [images[idx] for idx in _permutation]
|
|
|
|
|
|
|
|
|
382 |
|
383 |
if has_tqdm:
|
384 |
range_iter = trange(
|
385 |
0,
|
386 |
+
len(images),
|
387 |
batch_size,
|
388 |
desc='Encoding',
|
389 |
disable=not show_progress_bar,
|
390 |
)
|
391 |
else:
|
392 |
+
range_iter = range(0, len(images), batch_size)
|
393 |
|
394 |
truncate_dim = truncate_dim or self.config.truncate_dim
|
395 |
+
|
396 |
for i in range_iter:
|
397 |
+
_processed_images = []
|
398 |
+
for img in images[i: i + batch_size]:
|
399 |
+
if isinstance(img, str):
|
400 |
+
if img.startswith('http'):
|
401 |
+
response = requests.get(img)
|
402 |
+
image = Image.open(BytesIO(response.content)).convert('RGB')
|
403 |
+
elif img.startswith('data:image/'):
|
404 |
+
image = self._decode_image_data(img).convert('RGB')
|
405 |
+
else:
|
406 |
+
image = Image.open(img).convert('RGB')
|
407 |
+
elif isinstance(img, Image.Image):
|
408 |
+
image = img.convert('RGB')
|
409 |
+
else:
|
410 |
+
raise ValueError('Unsupported image format')
|
411 |
+
_processed_images.append(image)
|
412 |
|
413 |
+
pixelvals = self.preprocess(_processed_images)
|
414 |
+
pixelvals = pixelvals.to(self.device)
|
415 |
+
embeddings = self.get_image_features(pixelvals)
|
416 |
|
417 |
if truncate_dim:
|
418 |
embeddings = self.truncate_embeddings(embeddings, truncate_dim)
|
419 |
if normalize_embeddings:
|
420 |
+
embeddings = f.normalize(embeddings, p=2, dim=1)
|
421 |
if convert_to_numpy:
|
422 |
embeddings = embeddings.cpu()
|
423 |
+
|
424 |
all_embeddings.extend(embeddings)
|
425 |
|
426 |
+
all_embeddings = [all_embeddings[idx] for idx in _inverse_permutation]
|
427 |
|
428 |
if convert_to_tensor:
|
429 |
all_embeddings = torch.stack(all_embeddings)
|
430 |
elif convert_to_numpy:
|
431 |
+
all_embeddings = np.asarray(
|
432 |
+
[emb.to(torch.float32).numpy() for emb in all_embeddings]
|
433 |
+
)
|
434 |
|
435 |
+
if _input_was_single_img:
|
436 |
all_embeddings = all_embeddings[0]
|
437 |
|
438 |
+
self.train(_is_training)
|
439 |
return all_embeddings
|
440 |
|
|
|
|
|
|
|
|
|
|
|
441 |
@torch.inference_mode()
|
442 |
+
def encode_text(
|
443 |
self,
|
444 |
+
sentences: Union[str, List[str]],
|
445 |
+
task: Optional[str] = None,
|
446 |
batch_size: int = 32,
|
447 |
show_progress_bar: Optional[bool] = None,
|
448 |
convert_to_numpy: bool = True,
|
|
|
450 |
device: Optional[torch.device] = None,
|
451 |
normalize_embeddings: bool = True,
|
452 |
truncate_dim: Optional[int] = None,
|
453 |
+
**tokenizer_kwargs,
|
454 |
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
|
455 |
"""
|
456 |
+
Computes text embeddings
|
457 |
+
|
458 |
Args:
|
459 |
+
sentences(`str` or `List[str]`):
|
460 |
+
Sentence or sentences to be encoded
|
461 |
+
task(`str`, *optional*, defaults to `None`):
|
462 |
+
Specifies the task for which the encoding is intended. If `task` is
|
463 |
+
not provided, all LoRA adapters are disabled, and the model reverts
|
464 |
+
to its original, general-purpose weights
|
465 |
batch_size(`int`, *optional*, defaults to 32):
|
466 |
Batch size for the computation
|
467 |
show_progress_bar(`bool`, *optional*, defaults to None):
|
468 |
+
Show a progress bar when encoding sentences. If set to None, progress
|
469 |
+
bar is only shown when `logger.level == logging.INFO` or
|
470 |
+
`logger.level == logging.DEBUG`
|
471 |
convert_to_numpy(`bool`, *optional*, defaults to True):
|
472 |
+
If true, the output is a list of numpy vectors. Else, it is a list of
|
473 |
+
pytorch tensors
|
474 |
convert_to_tensor(`bool`, *optional*, defaults to False):
|
475 |
+
If true, you get one large tensor as return. Overwrites any setting
|
476 |
+
from convert_to_numpy
|
477 |
device(`torch.device`, *optional*, defaults to None):
|
478 |
Which torch.device to use for the computation
|
479 |
normalize_embeddings(`bool`, *optional*, defaults to False):
|
480 |
If set to true, returned vectors will have length 1. In that case,
|
481 |
the faster dot-product (util.dot_score) instead of cosine similarity
|
482 |
+
can be used
|
483 |
truncate_dim(`int`, *optional*, defaults to None):
|
484 |
+
The dimension to truncate sentence embeddings to. If set to `None`
|
485 |
+
no truncation is performed
|
486 |
+
tokenizer_kwargs(`Dict[str, Any]`, *optional*, defaults to {}):
|
487 |
+
Keyword arguments for the tokenizer
|
488 |
Returns:
|
489 |
+
By default, a list of tensors is returned. If convert_to_tensor, a stacked
|
490 |
+
tensor is returned. If convert_to_numpy, a numpy matrix is returned.
|
|
|
491 |
"""
|
492 |
+
_is_training = self.training
|
|
|
493 |
self.eval()
|
494 |
+
|
|
|
495 |
all_embeddings = []
|
496 |
+
self.tokenizer = self.get_tokenizer()
|
497 |
+
|
498 |
if show_progress_bar is None:
|
499 |
show_progress_bar = (
|
500 |
logger.getEffectiveLevel() == logging.INFO
|
501 |
or logger.getEffectiveLevel() == logging.DEBUG
|
502 |
)
|
|
|
503 |
if convert_to_tensor:
|
504 |
convert_to_numpy = False
|
505 |
+
|
506 |
+
_input_was_string = False
|
507 |
+
if isinstance(sentences, str) or not hasattr(sentences, '__len__'):
|
508 |
+
sentences = [sentences]
|
509 |
+
_input_was_string = True
|
510 |
+
|
511 |
if device is not None:
|
512 |
self.to(device)
|
513 |
+
|
514 |
+
_permutation = np.argsort([-len(i) for i in sentences])
|
515 |
+
_inverse_permutation = np.argsort(_permutation)
|
516 |
+
sentences = [sentences[idx] for idx in _permutation]
|
517 |
+
|
518 |
+
tokenizer_kwargs['padding'] = tokenizer_kwargs.get('padding', True)
|
519 |
+
tokenizer_kwargs['max_length'] = tokenizer_kwargs.get('max_length', 512)
|
520 |
+
tokenizer_kwargs['truncation'] = tokenizer_kwargs.get('truncation', True)
|
521 |
+
|
522 |
if has_tqdm:
|
523 |
range_iter = trange(
|
524 |
0,
|
525 |
+
len(sentences),
|
526 |
batch_size,
|
527 |
desc='Encoding',
|
528 |
disable=not show_progress_bar,
|
529 |
)
|
530 |
else:
|
531 |
+
range_iter = range(0, len(sentences), batch_size)
|
|
|
|
|
532 |
|
533 |
truncate_dim = truncate_dim or self.config.truncate_dim
|
534 |
+
|
535 |
+
adapter_mask = None
|
536 |
+
if task:
|
537 |
+
if not self.text_model._supports_lora:
|
538 |
+
logger.warning('Text tower does not support LoRA task adaptation')
|
539 |
+
elif task not in self.text_model._lora_adaptation_map:
|
540 |
+
raise ValueError(
|
541 |
+
f'Unsupported task \'{task}\'. Choose one of the following: '
|
542 |
+
f'{", ".join(self.text_model._lora_adaptation_map)} or bypass the '
|
543 |
+
'`task` argument to disable LoRA completely.'
|
544 |
+
)
|
545 |
+
else:
|
546 |
+
taskid = self.text_model._lora_adaptation_map[task]
|
547 |
+
nexamples = 1 if isinstance(sentences, str) else len(sentences)
|
548 |
+
adapter_mask = torch.full(
|
549 |
+
(nexamples,), taskid, dtype=torch.int32, device=self.device
|
550 |
+
)
|
551 |
+
if not self.text_model._supports_task_instructions:
|
552 |
+
logger.warning('Text tower does not support task instructions')
|
553 |
+
elif task not in self.text_model._task_instructions:
|
554 |
+
raise ValueError(
|
555 |
+
f'Unsupported task \'{task}\'. Choose one of the following: '
|
556 |
+
f'{", ".join(self.text_model._task_instructions)} or bypass the '
|
557 |
+
'`task` argument to disable task instructions completely.'
|
558 |
+
)
|
559 |
+
else:
|
560 |
+
instruction = self.text_model._task_instructions[task]
|
561 |
+
sentences = [instruction + sentence for sentence in sentences]
|
562 |
+
|
563 |
for i in range_iter:
|
564 |
+
tokens = self.tokenizer(
|
565 |
+
sentences[i: i + batch_size],
|
566 |
+
return_tensors='pt',
|
567 |
+
**tokenizer_kwargs,
|
568 |
+
).to(self.device)
|
569 |
+
|
570 |
+
embeddings = self.get_text_features(
|
571 |
+
input_ids=tokens, adapter_mask=adapter_mask
|
572 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
573 |
if truncate_dim:
|
574 |
embeddings = self.truncate_embeddings(embeddings, truncate_dim)
|
575 |
if normalize_embeddings:
|
576 |
+
embeddings = f.normalize(embeddings, p=2, dim=1)
|
577 |
if convert_to_numpy:
|
578 |
embeddings = embeddings.cpu()
|
579 |
all_embeddings.extend(embeddings)
|
580 |
+
|
581 |
+
all_embeddings = [all_embeddings[idx] for idx in _inverse_permutation]
|
582 |
+
|
583 |
if convert_to_tensor:
|
584 |
all_embeddings = torch.stack(all_embeddings)
|
585 |
elif convert_to_numpy:
|
586 |
+
all_embeddings = np.asarray(
|
587 |
+
[emb.to(torch.float32).numpy() for emb in all_embeddings]
|
588 |
+
)
|
589 |
+
if _input_was_string:
|
590 |
all_embeddings = all_embeddings[0]
|
591 |
+
|
592 |
+
self.train(_is_training)
|
593 |
return all_embeddings
|
594 |
|
595 |
def forward(
|
596 |
self,
|
597 |
input_ids: Union[None, torch.Tensor, BatchEncoding] = None,
|
598 |
pixel_values: Union[None, torch.FloatTensor, BatchFeature] = None,
|
599 |
+
adapter_mask: Optional[torch.Tensor] = None,
|
600 |
return_dict: Optional[bool] = None,
|
601 |
return_loss: Optional[bool] = None,
|
602 |
*_,
|
|
|
606 |
return_dict if return_dict is not None else self.config.use_return_dict
|
607 |
)
|
608 |
image_embeds = self.get_image_features(pixel_values=pixel_values)
|
609 |
+
text_embeds = self.get_text_features(
|
610 |
+
input_ids=input_ids, adapter_mask=adapter_mask
|
611 |
+
)
|
612 |
# normalized features
|
613 |
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
614 |
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
processing_clip.py
CHANGED
@@ -72,7 +72,6 @@ class JinaCLIPImageProcessor(BaseImageProcessor):
|
|
72 |
return output
|
73 |
|
74 |
def preprocess(self, images: ImageInput, **kwargs) -> BatchFeature:
|
75 |
-
|
76 |
_transform_needs_rebuild = False
|
77 |
for k, v in kwargs.items():
|
78 |
if k in self._valid_processor_keys:
|
|
|
72 |
return output
|
73 |
|
74 |
def preprocess(self, images: ImageInput, **kwargs) -> BatchFeature:
|
|
|
75 |
_transform_needs_rebuild = False
|
76 |
for k, v in kwargs.items():
|
77 |
if k in self._valid_processor_keys:
|
transform.py
CHANGED
@@ -1,11 +1,10 @@
|
|
1 |
-
import numbers
|
2 |
import random
|
3 |
import warnings
|
4 |
from dataclasses import asdict, dataclass
|
5 |
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
|
6 |
|
7 |
import torch
|
8 |
-
import torchvision.transforms.functional as
|
9 |
from torchvision.transforms import (
|
10 |
CenterCrop,
|
11 |
ColorJitter,
|
@@ -23,88 +22,93 @@ OPENAI_DATASET_MEAN = tuple(OPENAI_CLIP_MEAN)
|
|
23 |
OPENAI_DATASET_STD = tuple(OPENAI_CLIP_STD)
|
24 |
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
fill_color: int = 0
|
35 |
-
|
36 |
-
def __post_init__(self):
|
37 |
-
assert self.mode in ('RGB',)
|
38 |
-
|
39 |
-
@property
|
40 |
-
def num_channels(self):
|
41 |
-
return 3
|
42 |
-
|
43 |
-
@property
|
44 |
-
def input_size(self):
|
45 |
-
return (self.num_channels,) + (self.size, self.size)
|
46 |
-
|
47 |
-
|
48 |
-
_PREPROCESS_KEYS = set(asdict(PreprocessCfg()).keys())
|
49 |
|
50 |
|
51 |
-
def
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
Input dicts are filtered based on PreprocessCfg fields.
|
57 |
"""
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
return base_clean
|
68 |
|
|
|
|
|
69 |
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
|
|
|
|
|
|
73 |
|
74 |
-
@dataclass
|
75 |
-
class AugmentationCfg:
|
76 |
-
scale: Tuple[float, float] = (0.9, 1.0)
|
77 |
-
ratio: Optional[Tuple[float, float]] = None
|
78 |
-
color_jitter: Optional[
|
79 |
-
Union[float, Tuple[float, float, float], Tuple[float, float, float, float]]
|
80 |
-
] = None
|
81 |
-
re_prob: Optional[float] = None
|
82 |
-
re_count: Optional[int] = None
|
83 |
-
use_timm: bool = False
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
def
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
93 |
|
94 |
-
|
95 |
-
|
|
|
|
|
96 |
|
97 |
-
|
98 |
-
|
|
|
|
|
99 |
|
100 |
-
|
|
|
101 |
|
102 |
|
103 |
-
|
104 |
-
|
105 |
|
106 |
-
|
107 |
-
|
|
|
108 |
|
109 |
def __init__(
|
110 |
self,
|
@@ -159,8 +163,9 @@ class ResizeKeepRatio:
|
|
159 |
ratio_factor[0] / aspect_factor,
|
160 |
ratio_factor[1] * aspect_factor,
|
161 |
)
|
162 |
-
|
163 |
-
|
|
|
164 |
|
165 |
def __call__(self, img):
|
166 |
"""
|
@@ -180,7 +185,7 @@ class ResizeKeepRatio:
|
|
180 |
self.random_aspect_prob,
|
181 |
self.random_aspect_range,
|
182 |
)
|
183 |
-
img =
|
184 |
return img
|
185 |
|
186 |
def __repr__(self):
|
@@ -190,92 +195,8 @@ class ResizeKeepRatio:
|
|
190 |
return format_string
|
191 |
|
192 |
|
193 |
-
def center_crop_or_pad(
|
194 |
-
img: torch.Tensor, output_size: List[int], fill=0
|
195 |
-
) -> torch.Tensor:
|
196 |
-
"""Center crops and/or pads the given image.
|
197 |
-
If the image is torch Tensor, it is expected
|
198 |
-
to have [..., H, W] shape, where ... means an arbitrary number of leading
|
199 |
-
dimensions. If image size is smaller than output size along any edge, image is
|
200 |
-
padded with 0 and then center cropped.
|
201 |
-
|
202 |
-
Args:
|
203 |
-
img (PIL Image or Tensor): Image to be cropped.
|
204 |
-
output_size (sequence or int): (height, width) of the crop box. If int or
|
205 |
-
sequence with single int, it is used for both directions.
|
206 |
-
fill (int, Tuple[int]): Padding color
|
207 |
-
|
208 |
-
Returns:
|
209 |
-
PIL Image or Tensor: Cropped image.
|
210 |
-
"""
|
211 |
-
if isinstance(output_size, numbers.Number):
|
212 |
-
output_size = (int(output_size), int(output_size))
|
213 |
-
elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
|
214 |
-
output_size = (output_size[0], output_size[0])
|
215 |
-
|
216 |
-
_, image_height, image_width = F.get_dimensions(img)
|
217 |
-
crop_height, crop_width = output_size
|
218 |
-
|
219 |
-
if crop_width > image_width or crop_height > image_height:
|
220 |
-
padding_ltrb = [
|
221 |
-
(crop_width - image_width) // 2 if crop_width > image_width else 0,
|
222 |
-
(crop_height - image_height) // 2 if crop_height > image_height else 0,
|
223 |
-
(crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
|
224 |
-
(crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
|
225 |
-
]
|
226 |
-
img = F.pad(img, padding_ltrb, fill=fill)
|
227 |
-
_, image_height, image_width = F.get_dimensions(img)
|
228 |
-
if crop_width == image_width and crop_height == image_height:
|
229 |
-
return img
|
230 |
-
|
231 |
-
crop_top = int(round((image_height - crop_height) / 2.0))
|
232 |
-
crop_left = int(round((image_width - crop_width) / 2.0))
|
233 |
-
return F.crop(img, crop_top, crop_left, crop_height, crop_width)
|
234 |
-
|
235 |
-
|
236 |
-
class CenterCropOrPad(torch.nn.Module):
|
237 |
-
"""Crops the given image at the center.
|
238 |
-
If the image is torch Tensor, it is expected
|
239 |
-
to have [..., H, W] shape, where ... means an arbitrary number of leading
|
240 |
-
dimensions. If image size is smaller than output size along any edge, image is
|
241 |
-
padded with 0 and then center cropped.
|
242 |
-
|
243 |
-
Args:
|
244 |
-
size (sequence or int): Desired output size of the crop. If size is an
|
245 |
-
int instead of sequence like (h, w), a square crop (size, size) is
|
246 |
-
made. If provided a sequence of length 1, it will be interpreted as
|
247 |
-
(size[0], size[0]).
|
248 |
-
"""
|
249 |
-
|
250 |
-
def __init__(self, size, fill=0):
|
251 |
-
super().__init__()
|
252 |
-
self.size = _setup_size(
|
253 |
-
size, error_msg='Please provide only two dimensions (h, w) for size.'
|
254 |
-
)
|
255 |
-
self.fill = fill
|
256 |
-
|
257 |
-
def forward(self, img):
|
258 |
-
"""
|
259 |
-
Args:
|
260 |
-
img (PIL Image or Tensor): Image to be cropped.
|
261 |
-
|
262 |
-
Returns:
|
263 |
-
PIL Image or Tensor: Cropped image.
|
264 |
-
"""
|
265 |
-
return center_crop_or_pad(img, self.size, fill=self.fill)
|
266 |
-
|
267 |
-
def __repr__(self) -> str:
|
268 |
-
return f'{self.__class__.__name__}(size={self.size})'
|
269 |
-
|
270 |
-
|
271 |
-
def _convert_to_rgb(image):
|
272 |
-
return image.convert('RGB')
|
273 |
-
|
274 |
-
|
275 |
class _ColorJitter(object):
|
276 |
-
"""
|
277 |
-
Apply Color Jitter to the PIL image with a specified probability.
|
278 |
-
"""
|
279 |
|
280 |
def __init__(self, brightness=0.0, contrast=0.0, saturation=0.0, hue=0.0, p=0.8):
|
281 |
assert 0.0 <= p <= 1.0
|
@@ -292,9 +213,7 @@ class _ColorJitter(object):
|
|
292 |
|
293 |
|
294 |
class _GrayScale(object):
|
295 |
-
"""
|
296 |
-
Apply Gray Scale to the PIL image with a specified probability.
|
297 |
-
"""
|
298 |
|
299 |
def __init__(self, p=0.2):
|
300 |
assert 0.0 <= p <= 1.0
|
@@ -308,6 +227,20 @@ class _GrayScale(object):
|
|
308 |
return img
|
309 |
|
310 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
def image_transform(
|
312 |
image_size: Union[int, Tuple[int, int]],
|
313 |
is_train: bool,
|
@@ -407,10 +340,10 @@ def image_transform(
|
|
407 |
else:
|
408 |
if resize_mode == 'longest':
|
409 |
transforms = [
|
410 |
-
|
411 |
image_size, interpolation=interpolation_mode, longest=1
|
412 |
),
|
413 |
-
|
414 |
]
|
415 |
elif resize_mode == 'squash':
|
416 |
if isinstance(image_size, int):
|
@@ -428,7 +361,7 @@ def image_transform(
|
|
428 |
transforms = [Resize(image_size[0], interpolation=interpolation_mode)]
|
429 |
else:
|
430 |
# resize shortest edge to matching target dim for non-square target
|
431 |
-
transforms = [
|
432 |
transforms += [CenterCrop(image_size)]
|
433 |
|
434 |
transforms.extend(
|
@@ -439,20 +372,3 @@ def image_transform(
|
|
439 |
]
|
440 |
)
|
441 |
return Compose(transforms)
|
442 |
-
|
443 |
-
|
444 |
-
def image_transform_v2(
|
445 |
-
cfg: PreprocessCfg,
|
446 |
-
is_train: bool,
|
447 |
-
aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None,
|
448 |
-
):
|
449 |
-
return image_transform(
|
450 |
-
image_size=cfg.size,
|
451 |
-
is_train=is_train,
|
452 |
-
mean=cfg.mean,
|
453 |
-
std=cfg.std,
|
454 |
-
interpolation=cfg.interpolation,
|
455 |
-
resize_mode=cfg.resize_mode,
|
456 |
-
fill_color=cfg.fill_color,
|
457 |
-
aug_cfg=aug_cfg,
|
458 |
-
)
|
|
|
|
|
1 |
import random
|
2 |
import warnings
|
3 |
from dataclasses import asdict, dataclass
|
4 |
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
|
5 |
|
6 |
import torch
|
7 |
+
import torchvision.transforms.functional as f
|
8 |
from torchvision.transforms import (
|
9 |
CenterCrop,
|
10 |
ColorJitter,
|
|
|
22 |
OPENAI_DATASET_STD = tuple(OPENAI_CLIP_STD)
|
23 |
|
24 |
|
25 |
+
def _setup_size(size, error_msg):
|
26 |
+
if isinstance(size, int):
|
27 |
+
return size, size
|
28 |
+
if isinstance(size, Sequence) and len(size) == 1:
|
29 |
+
return size[0], size[0]
|
30 |
+
if len(size) != 2:
|
31 |
+
raise ValueError(error_msg)
|
32 |
+
return size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
|
35 |
+
def _center_crop_or_pad(
|
36 |
+
img: torch.Tensor,
|
37 |
+
output_size: Union[int, Tuple[int, ...], List[int]],
|
38 |
+
fill: Union[int, Tuple[int]] = 0,
|
39 |
+
) -> torch.Tensor:
|
|
|
40 |
"""
|
41 |
+
Center crops and/or pads the given image. If the image is torch Tensor, it is
|
42 |
+
expected to have [..., H, W] shape, where ... means an arbitrary number of leading
|
43 |
+
dimensions. If image size is smaller than output size along any edge, image is
|
44 |
+
padded with 0 and then center cropped.
|
45 |
+
"""
|
46 |
+
if isinstance(output_size, int):
|
47 |
+
output_size = (output_size, output_size)
|
48 |
+
elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
|
49 |
+
output_size = (output_size[0], output_size[0])
|
|
|
50 |
|
51 |
+
_, image_height, image_width = f.get_dimensions(img)
|
52 |
+
crop_height, crop_width = output_size
|
53 |
|
54 |
+
if crop_width > image_width or crop_height > image_height:
|
55 |
+
padding_ltrb = [
|
56 |
+
(crop_width - image_width) // 2 if crop_width > image_width else 0,
|
57 |
+
(crop_height - image_height) // 2 if crop_height > image_height else 0,
|
58 |
+
(crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
|
59 |
+
(crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
|
60 |
+
]
|
61 |
+
img = f.pad(img, padding_ltrb, fill=fill)
|
62 |
+
_, image_height, image_width = f.get_dimensions(img)
|
63 |
+
if crop_width == image_width and crop_height == image_height:
|
64 |
+
return img
|
65 |
|
66 |
+
crop_top = int(round((image_height - crop_height) / 2.0))
|
67 |
+
crop_left = int(round((image_width - crop_width) / 2.0))
|
68 |
+
return f.crop(img, crop_top, crop_left, crop_height, crop_width)
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
class _CenterCropOrPad(torch.nn.Module):
|
72 |
+
"""Crops the given image at the center.
|
73 |
+
If the image is torch Tensor, it is expected
|
74 |
+
to have [..., H, W] shape, where ... means an arbitrary number of leading
|
75 |
+
dimensions. If image size is smaller than output size along any edge, image is
|
76 |
+
padded with 0 and then center cropped.
|
77 |
|
78 |
+
Args:
|
79 |
+
size (sequence or int): Desired output size of the crop. If size is an
|
80 |
+
int instead of sequence like (h, w), a square crop (size, size) is
|
81 |
+
made. If provided a sequence of length 1, it will be interpreted as
|
82 |
+
(size[0], size[0]).
|
83 |
+
"""
|
84 |
|
85 |
+
def __init__(self, size, fill=0):
|
86 |
+
super().__init__()
|
87 |
+
self.size = _setup_size(
|
88 |
+
size, error_msg='Please provide only two dimensions (h, w) for size.'
|
89 |
+
)
|
90 |
+
self.fill = fill
|
91 |
|
92 |
+
def forward(self, img):
|
93 |
+
"""
|
94 |
+
Args:
|
95 |
+
img (PIL Image or Tensor): Image to be cropped.
|
96 |
|
97 |
+
Returns:
|
98 |
+
PIL Image or Tensor: Cropped image.
|
99 |
+
"""
|
100 |
+
return _center_crop_or_pad(img, self.size, fill=self.fill)
|
101 |
|
102 |
+
def __repr__(self) -> str:
|
103 |
+
return f'{self.__class__.__name__}(size={self.size})'
|
104 |
|
105 |
|
106 |
+
def _convert_to_rgb(image):
|
107 |
+
return image.convert('RGB')
|
108 |
|
109 |
+
|
110 |
+
class _ResizeKeepRatio:
|
111 |
+
"""Resize while keeping ratio. Copied from timm"""
|
112 |
|
113 |
def __init__(
|
114 |
self,
|
|
|
163 |
ratio_factor[0] / aspect_factor,
|
164 |
ratio_factor[1] * aspect_factor,
|
165 |
)
|
166 |
+
return [
|
167 |
+
round(x * factor / ratio) for x, factor in zip(source_size, ratio_factor)
|
168 |
+
]
|
169 |
|
170 |
def __call__(self, img):
|
171 |
"""
|
|
|
185 |
self.random_aspect_prob,
|
186 |
self.random_aspect_range,
|
187 |
)
|
188 |
+
img = f.resize(img, size, self.interpolation)
|
189 |
return img
|
190 |
|
191 |
def __repr__(self):
|
|
|
195 |
return format_string
|
196 |
|
197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
class _ColorJitter(object):
|
199 |
+
"""Apply color jitter to the PIL image with a specified probability"""
|
|
|
|
|
200 |
|
201 |
def __init__(self, brightness=0.0, contrast=0.0, saturation=0.0, hue=0.0, p=0.8):
|
202 |
assert 0.0 <= p <= 1.0
|
|
|
213 |
|
214 |
|
215 |
class _GrayScale(object):
|
216 |
+
"""Apply gray scale to the PIL image with a specified probability"""
|
|
|
|
|
217 |
|
218 |
def __init__(self, p=0.2):
|
219 |
assert 0.0 <= p <= 1.0
|
|
|
227 |
return img
|
228 |
|
229 |
|
230 |
+
@dataclass
|
231 |
+
class AugmentationCfg:
|
232 |
+
scale: Tuple[float, float] = (0.9, 1.0)
|
233 |
+
ratio: Optional[Tuple[float, float]] = None
|
234 |
+
color_jitter: Optional[
|
235 |
+
Union[float, Tuple[float, float, float], Tuple[float, float, float, float]]
|
236 |
+
] = None
|
237 |
+
re_prob: Optional[float] = None
|
238 |
+
re_count: Optional[int] = None
|
239 |
+
use_timm: bool = False
|
240 |
+
color_jitter_prob: float = None
|
241 |
+
gray_scale_prob: float = None
|
242 |
+
|
243 |
+
|
244 |
def image_transform(
|
245 |
image_size: Union[int, Tuple[int, int]],
|
246 |
is_train: bool,
|
|
|
340 |
else:
|
341 |
if resize_mode == 'longest':
|
342 |
transforms = [
|
343 |
+
_ResizeKeepRatio(
|
344 |
image_size, interpolation=interpolation_mode, longest=1
|
345 |
),
|
346 |
+
_CenterCropOrPad(image_size, fill=fill_color),
|
347 |
]
|
348 |
elif resize_mode == 'squash':
|
349 |
if isinstance(image_size, int):
|
|
|
361 |
transforms = [Resize(image_size[0], interpolation=interpolation_mode)]
|
362 |
else:
|
363 |
# resize shortest edge to matching target dim for non-square target
|
364 |
+
transforms = [_ResizeKeepRatio(image_size)]
|
365 |
transforms += [CenterCrop(image_size)]
|
366 |
|
367 |
transforms.extend(
|
|
|
372 |
]
|
373 |
)
|
374 |
return Compose(transforms)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|