gmastrapas
commited on
Commit
·
cdebfc7
1
Parent(s):
ae96581
fix: various fixes
Browse files- configuration_clip.py +4 -0
- eva_model.py +2 -1
- hf_model.py +67 -24
- modeling_clip.py +20 -27
- rope_embeddings.py +4 -9
configuration_clip.py
CHANGED
@@ -24,6 +24,8 @@ class JinaCLIPTextConfig(PretrainedConfig):
|
|
24 |
embed_dim: int = 768,
|
25 |
hf_model_name_or_path: str = 'jinaai/jina-bert-flash-implementation',
|
26 |
hf_model_config_kwargs: Optional[Dict[str, Any]] = None,
|
|
|
|
|
27 |
pooler_type: Optional[str] = None,
|
28 |
proj_type: Optional[str] = None,
|
29 |
proj_bias: bool = False,
|
@@ -34,6 +36,8 @@ class JinaCLIPTextConfig(PretrainedConfig):
|
|
34 |
self.embed_dim = embed_dim
|
35 |
self.hf_model_name_or_path = hf_model_name_or_path
|
36 |
self.hf_model_config_kwargs = hf_model_config_kwargs or {}
|
|
|
|
|
37 |
self.pooler_type = pooler_type
|
38 |
self.proj_type = proj_type
|
39 |
self.proj_bias = proj_bias
|
|
|
24 |
embed_dim: int = 768,
|
25 |
hf_model_name_or_path: str = 'jinaai/jina-bert-flash-implementation',
|
26 |
hf_model_config_kwargs: Optional[Dict[str, Any]] = None,
|
27 |
+
default_instruction_task: Optional[str] = None,
|
28 |
+
default_lora_task: Optional[str] = None,
|
29 |
pooler_type: Optional[str] = None,
|
30 |
proj_type: Optional[str] = None,
|
31 |
proj_bias: bool = False,
|
|
|
36 |
self.embed_dim = embed_dim
|
37 |
self.hf_model_name_or_path = hf_model_name_or_path
|
38 |
self.hf_model_config_kwargs = hf_model_config_kwargs or {}
|
39 |
+
self.default_instruction_task = default_instruction_task
|
40 |
+
self.default_lora_task = default_lora_task
|
41 |
self.pooler_type = pooler_type
|
42 |
self.proj_type = proj_type
|
43 |
self.proj_bias = proj_bias
|
eva_model.py
CHANGED
@@ -12,7 +12,8 @@ import torch.nn as nn
|
|
12 |
import torch.nn.functional as f
|
13 |
|
14 |
try:
|
15 |
-
from timm.models.layers import drop_path as timm_drop_path
|
|
|
16 |
except ImportError or ModuleNotFoundError:
|
17 |
from timm.layers import drop_path as timm_drop_path, to_2tuple, trunc_normal_
|
18 |
|
|
|
12 |
import torch.nn.functional as f
|
13 |
|
14 |
try:
|
15 |
+
from timm.models.layers import drop_path as timm_drop_path
|
16 |
+
from timm.models.layers import to_2tuple, trunc_normal_
|
17 |
except ImportError or ModuleNotFoundError:
|
18 |
from timm.layers import drop_path as timm_drop_path, to_2tuple, trunc_normal_
|
19 |
|
hf_model.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
import re
|
|
|
2 |
from typing import Dict, Optional
|
|
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
from transformers import AutoConfig, AutoModel, PretrainedConfig
|
@@ -9,7 +11,6 @@ from transformers.modeling_outputs import (
|
|
9 |
BaseModelOutputWithPoolingAndCrossAttentions,
|
10 |
)
|
11 |
|
12 |
-
|
13 |
_HF_ARCH_DICT = {
|
14 |
# https://huggingface.co/docs/transformers/model_doc/roberta#roberta
|
15 |
'roberta': {
|
@@ -120,6 +121,8 @@ class HFTextEncoder(nn.Module):
|
|
120 |
trust_remote_code: bool = False,
|
121 |
revision: Optional[str] = None,
|
122 |
code_revision: Optional[str] = None,
|
|
|
|
|
123 |
model_config_kwargs: Optional[Dict] = None,
|
124 |
):
|
125 |
super().__init__()
|
@@ -129,39 +132,35 @@ class HFTextEncoder(nn.Module):
|
|
129 |
model_config_kwargs = model_config_kwargs or {}
|
130 |
|
131 |
if config is None:
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
revision=revision,
|
136 |
-
code_revision=code_revision,
|
137 |
-
)
|
138 |
-
self.config.update(model_config_kwargs)
|
139 |
-
create_func, model_args = (
|
140 |
-
(AutoModel.from_pretrained, model_name_or_path)
|
141 |
-
if pretrained
|
142 |
-
else (AutoModel.from_config, self.config)
|
143 |
-
)
|
144 |
-
if (
|
145 |
-
hasattr(self.config, 'is_encoder_decoder')
|
146 |
-
and self.config.is_encoder_decoder
|
147 |
-
):
|
148 |
-
self.transformer = create_func(
|
149 |
-
model_args,
|
150 |
trust_remote_code=trust_remote_code,
|
151 |
revision=revision,
|
|
|
152 |
code_revision=code_revision,
|
153 |
**model_config_kwargs,
|
154 |
)
|
155 |
-
self.
|
156 |
else:
|
157 |
-
self.
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
trust_remote_code=trust_remote_code,
|
160 |
-
revision=revision,
|
161 |
add_pooling_layer=False,
|
162 |
code_revision=code_revision,
|
163 |
-
**model_config_kwargs,
|
164 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
else:
|
166 |
self.config = config
|
167 |
self.config.update(model_config_kwargs)
|
@@ -209,6 +208,50 @@ class HFTextEncoder(nn.Module):
|
|
209 |
self._task_instructions = self.transformer._task_instructions
|
210 |
self._supports_task_instructions = True
|
211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
@torch.jit.ignore
|
213 |
def set_grad_checkpointing(self, _=True):
|
214 |
self.transformer.gradient_checkpointing_enable()
|
|
|
1 |
import re
|
2 |
+
import warnings
|
3 |
from typing import Dict, Optional
|
4 |
+
|
5 |
import torch
|
6 |
import torch.nn as nn
|
7 |
from transformers import AutoConfig, AutoModel, PretrainedConfig
|
|
|
11 |
BaseModelOutputWithPoolingAndCrossAttentions,
|
12 |
)
|
13 |
|
|
|
14 |
_HF_ARCH_DICT = {
|
15 |
# https://huggingface.co/docs/transformers/model_doc/roberta#roberta
|
16 |
'roberta': {
|
|
|
121 |
trust_remote_code: bool = False,
|
122 |
revision: Optional[str] = None,
|
123 |
code_revision: Optional[str] = None,
|
124 |
+
default_instruction_task: Optional[str] = None,
|
125 |
+
default_lora_task: Optional[str] = None,
|
126 |
model_config_kwargs: Optional[Dict] = None,
|
127 |
):
|
128 |
super().__init__()
|
|
|
132 |
model_config_kwargs = model_config_kwargs or {}
|
133 |
|
134 |
if config is None:
|
135 |
+
if pretrained:
|
136 |
+
self.transformer = AutoModel.from_pretrained(
|
137 |
+
model_name_or_path,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
trust_remote_code=trust_remote_code,
|
139 |
revision=revision,
|
140 |
+
add_pooling_layer=False,
|
141 |
code_revision=code_revision,
|
142 |
**model_config_kwargs,
|
143 |
)
|
144 |
+
self.config = self.transformer.config
|
145 |
else:
|
146 |
+
self.config = AutoConfig.from_pretrained(
|
147 |
+
model_name_or_path,
|
148 |
+
trust_remote_code=trust_remote_code,
|
149 |
+
code_revision=code_revision,
|
150 |
+
)
|
151 |
+
self.config.update(model_config_kwargs)
|
152 |
+
self.transformer = AutoModel.from_config(
|
153 |
+
self.config,
|
154 |
trust_remote_code=trust_remote_code,
|
|
|
155 |
add_pooling_layer=False,
|
156 |
code_revision=code_revision,
|
|
|
157 |
)
|
158 |
+
if (
|
159 |
+
hasattr(self.config, 'is_encoder_decoder')
|
160 |
+
and self.config.is_encoder_decoder
|
161 |
+
):
|
162 |
+
self.transformer = self.transformer.encoder
|
163 |
+
|
164 |
else:
|
165 |
self.config = config
|
166 |
self.config.update(model_config_kwargs)
|
|
|
208 |
self._task_instructions = self.transformer._task_instructions
|
209 |
self._supports_task_instructions = True
|
210 |
|
211 |
+
self.default_instruction_task = None
|
212 |
+
self.default_lora_task = None
|
213 |
+
self.default_instruction = None
|
214 |
+
self.default_loraid = None
|
215 |
+
if default_instruction_task is not None:
|
216 |
+
self.default_instruction_task = default_instruction_task
|
217 |
+
self.default_instruction = self.get_instruction_from_task(
|
218 |
+
default_instruction_task
|
219 |
+
)
|
220 |
+
if default_lora_task is not None:
|
221 |
+
self.default_lora_task = default_lora_task
|
222 |
+
self.default_loraid = self.get_loraid_from_task(default_lora_task)
|
223 |
+
|
224 |
+
def get_instruction_from_task(self, task: str) -> Optional[str]:
|
225 |
+
if self._supports_task_instructions:
|
226 |
+
if task not in self._task_instructions:
|
227 |
+
raise ValueError(
|
228 |
+
f'Unsupported task \'{task}\'. Choose one of the following: '
|
229 |
+
f'{", ".join(self._task_instructions)} or set to None to disable '
|
230 |
+
f'task instructions completely'
|
231 |
+
)
|
232 |
+
return self._task_instructions[task]
|
233 |
+
else:
|
234 |
+
warnings.warn(
|
235 |
+
'Model does not support task instructions, ignoring instruction '
|
236 |
+
f"task '{task}'"
|
237 |
+
)
|
238 |
+
return None
|
239 |
+
|
240 |
+
def get_loraid_from_task(self, task: str) -> Optional[int]:
|
241 |
+
if self._supports_lora:
|
242 |
+
if task not in self._lora_adaptation_map:
|
243 |
+
raise ValueError(
|
244 |
+
f'Unsupported task \'{task}\'. Choose one of the following: '
|
245 |
+
f'{", ".join(self._task_instructions)} or set to None to disable '
|
246 |
+
f'the LoRA adapters completely'
|
247 |
+
)
|
248 |
+
return self._lora_adaptation_map[task]
|
249 |
+
else:
|
250 |
+
warnings.warn(
|
251 |
+
f"Model does not support LoRA adapters, ignoring LoRA task '{task}'"
|
252 |
+
)
|
253 |
+
return None
|
254 |
+
|
255 |
@torch.jit.ignore
|
256 |
def set_grad_checkpointing(self, _=True):
|
257 |
self.transformer.gradient_checkpointing_enable()
|
modeling_clip.py
CHANGED
@@ -68,6 +68,8 @@ def _build_text_tower(config: JinaCLIPTextConfig) -> HFTextEncoder:
|
|
68 |
return HFTextEncoder(
|
69 |
model_name_or_path=config.hf_model_name_or_path,
|
70 |
output_dim=config.embed_dim,
|
|
|
|
|
71 |
pooler_type=config.pooler_type,
|
72 |
proj_type=config.proj_type,
|
73 |
proj_bias=config.proj_bias,
|
@@ -532,33 +534,25 @@ class JinaCLIPModel(JinaCLIPPreTrainedModel):
|
|
532 |
|
533 |
truncate_dim = truncate_dim or self.config.truncate_dim
|
534 |
|
535 |
-
|
|
|
536 |
if task:
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
elif task not in self.text_model._task_instructions:
|
554 |
-
raise ValueError(
|
555 |
-
f'Unsupported task \'{task}\'. Choose one of the following: '
|
556 |
-
f'{", ".join(self.text_model._task_instructions)} or bypass the '
|
557 |
-
'`task` argument to disable task instructions completely.'
|
558 |
-
)
|
559 |
-
else:
|
560 |
-
instruction = self.text_model._task_instructions[task]
|
561 |
-
sentences = [instruction + sentence for sentence in sentences]
|
562 |
|
563 |
for i in range_iter:
|
564 |
tokens = self.tokenizer(
|
@@ -566,7 +560,6 @@ class JinaCLIPModel(JinaCLIPPreTrainedModel):
|
|
566 |
return_tensors='pt',
|
567 |
**tokenizer_kwargs,
|
568 |
).to(self.device)
|
569 |
-
|
570 |
embeddings = self.get_text_features(
|
571 |
input_ids=tokens, adapter_mask=adapter_mask
|
572 |
)
|
|
|
68 |
return HFTextEncoder(
|
69 |
model_name_or_path=config.hf_model_name_or_path,
|
70 |
output_dim=config.embed_dim,
|
71 |
+
default_instruction_task=config.default_instruction_task,
|
72 |
+
default_lora_task=config.default_lora_task,
|
73 |
pooler_type=config.pooler_type,
|
74 |
proj_type=config.proj_type,
|
75 |
proj_bias=config.proj_bias,
|
|
|
534 |
|
535 |
truncate_dim = truncate_dim or self.config.truncate_dim
|
536 |
|
537 |
+
instruction = self.text_model.default_instruction
|
538 |
+
loraid = self.text_model.default_loraid
|
539 |
if task:
|
540 |
+
_selected_instruction = self.text_model.get_instruction_from_task(task)
|
541 |
+
if _selected_instruction is not None:
|
542 |
+
instruction = _selected_instruction
|
543 |
+
_selected_loraid = self.text_model.get_loraid_from_task(task)
|
544 |
+
if _selected_loraid is not None:
|
545 |
+
loraid = _selected_loraid
|
546 |
+
|
547 |
+
if instruction is not None:
|
548 |
+
sentences = [instruction + sentence for sentence in sentences]
|
549 |
+
|
550 |
+
adapter_mask = None
|
551 |
+
if loraid is not None:
|
552 |
+
nexamples = 1 if isinstance(sentences, str) else len(sentences)
|
553 |
+
adapter_mask = torch.full(
|
554 |
+
(nexamples,), loraid, dtype=torch.int32, device=self.device
|
555 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
556 |
|
557 |
for i in range_iter:
|
558 |
tokens = self.tokenizer(
|
|
|
560 |
return_tensors='pt',
|
561 |
**tokenizer_kwargs,
|
562 |
).to(self.device)
|
|
|
563 |
embeddings = self.get_text_features(
|
564 |
input_ids=tokens, adapter_mask=adapter_mask
|
565 |
)
|
rope_embeddings.py
CHANGED
@@ -3,7 +3,6 @@
|
|
3 |
# https://github.com/baaivision/EVA/tree/master/EVA-CLIP/rei/eva_clip
|
4 |
# --------------------------------------------------------
|
5 |
|
6 |
-
import logging
|
7 |
from math import pi
|
8 |
|
9 |
import torch
|
@@ -75,10 +74,8 @@ class VisionRotaryEmbedding(nn.Module):
|
|
75 |
|
76 |
freqs = broadcast((freqs_h[:, None, :], freqs_w[None, :, :]), dim=-1)
|
77 |
|
78 |
-
self.register_buffer('freqs_cos', freqs.cos())
|
79 |
-
self.register_buffer('freqs_sin', freqs.sin())
|
80 |
-
|
81 |
-
logging.info(f'Shape of rope freq: {self.freqs_cos.shape}')
|
82 |
|
83 |
def forward(self, t, start_index=0):
|
84 |
rot_dim = self.freqs_cos.shape[-1]
|
@@ -137,10 +134,8 @@ class VisionRotaryEmbeddingFast(nn.Module):
|
|
137 |
|
138 |
self.patch_dropout = patch_dropout
|
139 |
|
140 |
-
self.register_buffer('freqs_cos', freqs_cos)
|
141 |
-
self.register_buffer('freqs_sin', freqs_sin)
|
142 |
-
|
143 |
-
logging.info(f'Shape of rope freq: {self.freqs_cos.shape}')
|
144 |
|
145 |
def forward(self, t, patch_indices_keep=None):
|
146 |
if patch_indices_keep is not None:
|
|
|
3 |
# https://github.com/baaivision/EVA/tree/master/EVA-CLIP/rei/eva_clip
|
4 |
# --------------------------------------------------------
|
5 |
|
|
|
6 |
from math import pi
|
7 |
|
8 |
import torch
|
|
|
74 |
|
75 |
freqs = broadcast((freqs_h[:, None, :], freqs_w[None, :, :]), dim=-1)
|
76 |
|
77 |
+
self.register_buffer('freqs_cos', freqs.cos(), persistent=False)
|
78 |
+
self.register_buffer('freqs_sin', freqs.sin(), persistent=False)
|
|
|
|
|
79 |
|
80 |
def forward(self, t, start_index=0):
|
81 |
rot_dim = self.freqs_cos.shape[-1]
|
|
|
134 |
|
135 |
self.patch_dropout = patch_dropout
|
136 |
|
137 |
+
self.register_buffer('freqs_cos', freqs_cos, persistent=False)
|
138 |
+
self.register_buffer('freqs_sin', freqs_sin, persistent=False)
|
|
|
|
|
139 |
|
140 |
def forward(self, t, patch_indices_keep=None):
|
141 |
if patch_indices_keep is not None:
|