# coding=utf-8 # # Code mainly copied from: # https://github.com/huggingface/transformers/blob/main/src/transformers/models/clip/modeling_clip.py # and adjusted for Jina CLIP from functools import partial from typing import List, Optional, Tuple, Union from io import BytesIO import requests import base64 import numpy as np import torch import torch.nn.functional as f import torch.utils.checkpoint from torch import nn from transformers import ( AutoImageProcessor, AutoTokenizer, BatchEncoding, BatchFeature, PreTrainedModel, logging, ) from transformers.models.clip.modeling_clip import ( CLIPOutput, CLIPTextModelOutput, CLIPVisionModelOutput, clip_loss, ) try: from tqdm.autonotebook import trange has_tqdm = True except ImportError: has_tqdm = False from .configuration_clip import JinaCLIPConfig, JinaCLIPTextConfig, JinaCLIPVisionConfig from .eva_model import EVAVisionTransformer from .hf_model import HFTextEncoder logger = logging.get_logger(__name__) """ Jina CLIP model implementation """ class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm (with cast back to input dtype).""" def forward(self, x: torch.Tensor): origtype = x.dtype x = f.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) return x.to(origtype) def _build_text_tower(config: JinaCLIPTextConfig) -> HFTextEncoder: return HFTextEncoder( model_name_or_path=config.hf_model_name_or_path, output_dim=config.embed_dim, pooler_type=config.pooler_type, proj_type=config.proj_type, proj_bias=config.proj_bias, pretrained=False, output_tokens=False, trust_remote_code=True, revision=None, model_config_kwargs=config.hf_model_config_kwargs, ) def _build_vision_tower(config: JinaCLIPVisionConfig) -> EVAVisionTransformer: norm_layer = partial(LayerNorm, eps=1e-6) if config.fused_layer_norm: try: from apex.normalization import FusedLayerNorm norm_layer = partial(FusedLayerNorm, eps=1e-6) except (ModuleNotFoundError, ImportError): logger.warning('Please install apex to use fused layer norm, ignoring') return EVAVisionTransformer( img_size=config.image_size, patch_size=config.patch_size, num_classes=config.embed_dim, use_mean_pooling=False, init_values=config.ls_init_value, patch_dropout=config.patch_dropout, embed_dim=config.width, depth=config.layers, num_heads=config.width // config.head_width, mlp_ratio=config.mlp_ratio, qkv_bias=config.qkv_bias, drop_path_rate=config.drop_path_rate, norm_layer=norm_layer, xattn=config.x_attention, rope=config.rope_embeddings, postnorm=config.post_norm, pt_hw_seq_len=config.pt_hw_seq_len, intp_freq=config.intp_freq, naiveswiglu=config.naive_swiglu, subln=config.subln, proj_type=config.proj_type, ) class JinaCLIPPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = JinaCLIPConfig base_model_prefix = 'clip' supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, JinaCLIPModel): if isinstance(module.text_projection, nn.Linear): nn.init.normal_( module.text_projection.weight, std=module.text_embed_dim**-0.5 * self.config.initializer_factor, ) if isinstance(module.text_projection, nn.Linear): nn.init.normal_( module.visual_projection.weight, std=module.vision_embed_dim**-0.5 * self.config.initializer_factor, ) if isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() class JinaCLIPTextModel(JinaCLIPPreTrainedModel): config_class = JinaCLIPTextConfig def __init__(self, config: JinaCLIPTextConfig): super().__init__(config) self.text_model = _build_text_tower(config) self.post_init() def forward( self, input_ids: Union[None, torch.Tensor, BatchEncoding] = None, return_dict: Optional[bool] = None, *_, **__, ) -> Union[Tuple[Optional[torch.FloatTensor], ...], CLIPTextModelOutput]: return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) x = input_ids.input_ids if isinstance(input_ids, BatchEncoding) else input_ids feats = self.text_model(x=x) out = CLIPTextModelOutput(text_embeds=feats) return out if return_dict else out.to_tuple() class JinaCLIPVisionModel(JinaCLIPPreTrainedModel): config_class = JinaCLIPVisionConfig main_input_name = 'pixel_values' def __init__(self, config: JinaCLIPVisionConfig): super().__init__(config) self.vision_model = _build_vision_tower(config) self.post_init() def forward( self, pixel_values: Union[None, torch.FloatTensor, BatchFeature] = None, return_dict: Optional[bool] = None, *_, **__, ) -> Union[Tuple[Optional[torch.FloatTensor], ...], CLIPVisionModelOutput]: return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) x = ( pixel_values.pixel_values if isinstance(pixel_values, BatchFeature) else pixel_values ) feats = self.vision_model(x=x) out = CLIPVisionModelOutput(image_embeds=feats) return out if return_dict else out.to_tuple() class JinaCLIPModel(JinaCLIPPreTrainedModel): config_class = JinaCLIPConfig def __init__(self, config: JinaCLIPConfig): super().__init__(config) if not isinstance(config.text_config, JinaCLIPTextConfig): raise ValueError( 'Attribute config.text_config is expected to be of type ' f'JinaCLIPTextConfig but is of type {type(config.text_config)}.' ) if not isinstance(config.vision_config, JinaCLIPVisionConfig): raise ValueError( 'Attribute config.vision_config is expected to be of type ' f'JinaCLIPVisionConfig but is of type {type(config.vision_config)}.' ) text_config = config.text_config vision_config = config.vision_config self.add_projections = config.add_projections self.projection_dim = config.projection_dim self.text_embed_dim = text_config.embed_dim self.vision_embed_dim = vision_config.embed_dim self.text_model = _build_text_tower(text_config) self.vision_model = _build_vision_tower(vision_config) self.logit_scale = nn.Parameter( torch.tensor(self.config.logit_scale_init_value) ) if self.add_projections: self.visual_projection = nn.Linear( self.vision_embed_dim, self.projection_dim, bias=False ) self.text_projection = nn.Linear( self.text_embed_dim, self.projection_dim, bias=False ) else: self.visual_projection = nn.Identity() self.text_projection = nn.Identity() self.tokenizer = None self.preprocess = None self.post_init() def get_tokenizer(self): if not self.tokenizer: self.tokenizer = AutoTokenizer.from_pretrained( self.config._name_or_path, trust_remote_code=True ) return self.tokenizer def get_preprocess(self): if not self.preprocess: self.preprocess = AutoImageProcessor.from_pretrained( self.config._name_or_path, trust_remote_code=True ) return self.preprocess def get_text_features( self, input_ids: Union[None, torch.Tensor, BatchEncoding] = None, *_, **__, ) -> torch.FloatTensor: x = input_ids.input_ids if isinstance(input_ids, BatchEncoding) else input_ids return self.text_projection(self.text_model(x=x)) def get_image_features( self, pixel_values: Union[None, torch.FloatTensor, BatchFeature] = None, *_, **__, ) -> torch.FloatTensor: x = ( pixel_values.pixel_values if isinstance(pixel_values, BatchFeature) else pixel_values ) return self.visual_projection(self.vision_model(x=x)) @torch.inference_mode() def encode_text( self, sentences: Union[str, List[str]], batch_size: int = 32, show_progress_bar: Optional[bool] = None, convert_to_numpy: bool = True, convert_to_tensor: bool = False, device: Optional[torch.device] = None, normalize_embeddings: bool = False, **tokenizer_kwargs, ) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]: """ Computes sentence embeddings Args: sentences(`str` or `List[str]`): Sentence or sentences to be encoded batch_size(`int`, *optional*, defaults to 32): Batch size for the computation show_progress_bar(`bool`, *optional*, defaults to None): Show a progress bar when encoding sentences. If set to None, progress bar is only shown when `logger.level == logging.INFO` or `logger.level == logging.DEBUG`. convert_to_numpy(`bool`, *optional*, defaults to True): If true, the output is a list of numpy vectors. Else, it is a list of pytorch tensors. convert_to_tensor(`bool`, *optional*, defaults to False): If true, you get one large tensor as return. Overwrites any setting from convert_to_numpy device(`torch.device`, *optional*, defaults to None): Which torch.device to use for the computation normalize_embeddings(`bool`, *optional*, defaults to False): If set to true, returned vectors will have length 1. In that case, the faster dot-product (util.dot_score) instead of cosine similarity can be used. tokenizer_kwargs(`Dict[str, Any]`, *optional*, defaults to {}): Keyword arguments for the tokenizer Returns: By default, a list of tensors is returned. If convert_to_tensor, a stacked tensor is returned. If convert_to_numpy, a numpy matrix is returned. """ is_training = self.training self.eval() all_embeddings = [] self.tokenizer = self.get_tokenizer() if show_progress_bar is None: show_progress_bar = ( logger.getEffectiveLevel() == logging.INFO or logger.getEffectiveLevel() == logging.DEBUG ) if convert_to_tensor: convert_to_numpy = False input_was_string = False if isinstance(sentences, str) or not hasattr(sentences, '__len__'): sentences = [sentences] input_was_string = True if device is not None: self.to(device) permutation = np.argsort([-len(i) for i in sentences]) inverse_permutation = np.argsort(permutation) sentences = [sentences[idx] for idx in permutation] tokenizer_kwargs['padding'] = tokenizer_kwargs.get('padding', True) tokenizer_kwargs['max_length'] = tokenizer_kwargs.get('max_length', 512) tokenizer_kwargs['truncation'] = tokenizer_kwargs.get('truncation', True) if has_tqdm: range_iter = trange( 0, len(sentences), batch_size, desc='Encoding', disable=not show_progress_bar, ) else: range_iter = range(0, len(sentences), batch_size) for i in range_iter: encoded_input = self.tokenizer( sentences[i : i + batch_size], return_tensors='pt', **tokenizer_kwargs, ).to(self.device) embeddings = self.get_text_features(input_ids=encoded_input) if normalize_embeddings: embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1) if convert_to_numpy: embeddings = embeddings.cpu() all_embeddings.extend(embeddings) all_embeddings = [all_embeddings[idx] for idx in inverse_permutation] if convert_to_tensor: all_embeddings = torch.stack(all_embeddings) elif convert_to_numpy: all_embeddings = np.asarray([emb.to(torch.float32).numpy() for emb in all_embeddings]) if input_was_string: all_embeddings = all_embeddings[0] self.train(is_training) return all_embeddings def decode_data_image(data_image_str): header, data = data_image_str.split(',', 1) image_data = base64.b64decode(data) return Image.open(BytesIO(image_data)) @torch.inference_mode() def encode_image( self, images: Union[str, List[Union[str, "Image.Image"]]], batch_size: int = 32, show_progress_bar: Optional[bool] = None, convert_to_numpy: bool = True, convert_to_tensor: bool = False, device: Optional[torch.device] = None, normalize_embeddings: bool = False, ) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]: """ Computes image embeddings. Args: images(`str` or `List[Union[str, Image.Image]]`): image paths, URLs, PIL images, or data:image/ strings to be encoded batch_size(`int`, *optional*, defaults to 32): Batch size for the computation show_progress_bar(`bool`, *optional*, defaults to None): Show a progress bar when encoding images. If set to None, progress bar is only shown when `logger.level == logging.INFO` or `logger.level == logging.DEBUG`. convert_to_numpy(`bool`, *optional*, defaults to True): If true, the output is a list of numpy vectors. Else, it is a list of pytorch tensors. convert_to_tensor(`bool`, *optional*, defaults to False): If true, you get one large tensor as return. Overwrites any setting from convert_to_numpy device(`torch.device`, *optional*, defaults to None): Which torch.device to use for the computation normalize_embeddings(`bool`, *optional*, defaults to False): If set to true, returned vectors will have length 1. In that case, the faster dot-product (util.dot_score) instead of cosine similarity can be used. Returns: By default, a list of tensors is returned. If convert_to_tensor, a stacked tensor is returned. If convert_to_numpy, a numpy matrix is returned. """ is_training = self.training self.eval() self.preprocess = self.get_preprocess() all_embeddings = [] if show_progress_bar is None: show_progress_bar = ( logger.getEffectiveLevel() == logging.INFO or logger.getEffectiveLevel() == logging.DEBUG ) if convert_to_tensor: convert_to_numpy = False input_was_single_img = False if isinstance(images, str) or not hasattr(images, '__len__'): images = [images] input_was_single_img = True if device is not None: self.to(device) permutation = np.argsort([-len(str(i)) for i in images]) inverse_permutation = np.argsort(permutation) images = [images[idx] for idx in permutation] if has_tqdm: range_iter = trange( 0, len(images), batch_size, desc='Encoding', disable=not show_progress_bar, ) else: range_iter = range(0, len(images), batch_size) from PIL import Image for i in range_iter: batch_images = images[i:i+batch_size] processed_inputs = [] for img in batch_images: if isinstance(img, str): if img.startswith('http'): response = requests.get(img) image = Image.open(BytesIO(response.content)).convert('RGB') elif img.startswith('data:image/'): image = decode_data_image(img).convert('RGB') else: image = Image.open(img).convert('RGB') elif isinstance(img, Image.Image): image = img.convert('RGB') else: raise ValueError("Unsupported image format") processed_inputs.append(image) processed_inputs = self.preprocess(processed_inputs) processed_inputs = processed_inputs.to(self.device) embeddings = self.get_image_features(processed_inputs) if normalize_embeddings: embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1) if convert_to_numpy: embeddings = embeddings.cpu() all_embeddings.extend(embeddings) all_embeddings = [all_embeddings[idx] for idx in inverse_permutation] if convert_to_tensor: all_embeddings = torch.stack(all_embeddings) elif convert_to_numpy: all_embeddings = np.asarray([emb.to(torch.float32).numpy() for emb in all_embeddings]) if input_was_single_img: all_embeddings = all_embeddings[0] self.train(is_training) return all_embeddings def forward( self, input_ids: Union[None, torch.Tensor, BatchEncoding] = None, pixel_values: Union[None, torch.FloatTensor, BatchFeature] = None, return_dict: Optional[bool] = None, return_loss: Optional[bool] = None, *_, **__, ) -> Union[Tuple[Optional[torch.FloatTensor], ...], CLIPOutput]: return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) image_embeds = self.get_image_features(pixel_values=pixel_values) text_embeds = self.get_text_features(input_ids=input_ids) # normalized features image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale logits_per_image = logits_per_text.t() loss = None if return_loss: loss = clip_loss(logits_per_text) if not return_dict: output = ( logits_per_image, logits_per_text, text_embeds, image_embeds, None, None, ) return ((loss,) + output) if loss is not None else output return CLIPOutput( loss=loss, logits_per_image=logits_per_image, logits_per_text=logits_per_text, text_embeds=text_embeds, image_embeds=image_embeds, text_model_output=None, vision_model_output=None, )