File size: 6,988 Bytes
6417422
 
 
 
 
abf8f24
 
6417422
 
 
 
 
e7cdc21
 
6417422
 
 
 
e7cdc21
6417422
8ee2c90
6417422
e7cdc21
6417422
 
 
 
6607434
6417422
 
 
6607434
6417422
 
a792bea
ea6cbd8
6417422
 
 
b9d7d6e
668152b
b9d7d6e
 
668152b
 
6507fd6
668152b
 
 
 
 
b9d7d6e
668152b
 
 
 
 
6417422
 
668152b
 
 
6417422
 
0aaf6db
1f9045f
6417422
07d4bb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6417422
 
 
 
 
 
a792bea
6417422
6607434
 
 
 
 
 
 
6417422
 
14b6120
6607434
14b6120
 
 
 
 
 
 
 
 
 
 
6607434
 
 
 
 
14b6120
6607434
 
 
 
 
 
14b6120
 
6607434
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
---
tags:
  - feature-extraction
  - sentence-similarity
  - mteb
  - clip
  - vision
language: en
inference: false
license: apache-2.0
---

# jina-clip-v1
Jina CLIP: your CLIP model is also your text retriever!


## Intended Usage & Model Info

`jina-clip-v1` is a state-of-the-art English **multimodal (text-image) embedding model**.

Traditional text embedding models, such as [jina-embeddings-v2-base-en](https://huggingface.co/jinaai/jina-embeddings-v2-base-en), excel in text-to-text retrieval but incapable of cross-modal tasks. Models like [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) effectively align image and text embeddings but are not optimized for text-to-text retrieval due to their training methodologies and context limitations.

`jina-clip-v1` bridges this gap by offering robust performance in both domains. Its text component matches the retrieval efficiency of `jina-embeddings-v2-base-en`, while its overall architecture sets a new benchmark for cross-modal retrieval. This dual capability makes it an excellent tool for multimodal retrieval-augmented generation (M-RAG) applications, enabling seamless text-to-text and text-to-image searches within a single model.


## Data & Parameters

[Check out our paper](https://arxiv.org/abs/2405.20204)

## Usage

You can use Jina CLIP directly via transformers package.

```python
!pip install transformers einops timm pillow
from transformers import AutoModel
from numpy.linalg import norm

cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))

# Initialize the model
model = AutoModel.from_pretrained('jinaai/jina-clip-v1', trust_remote_code=True)

# New meaningful sentences
sentences = ['Bridge close-shot', 'Bridge in far away']

# Public image URLs
image_urls = [
    'https://fastly.picsum.photos/id/74/4288/2848.jpg?hmac=q02MzzHG23nkhJYRXR-_RgKTr6fpfwRgcXgE0EKvNB8',
    'https://fastly.picsum.photos/id/84/1280/848.jpg?hmac=YFRYDI4UsfbeTzI8ZakNOR98wVU7a-9a2tGF542539s'
]

# Encode text and images
text_embeddings = model.encode_text(sentences)
image_embeddings = model.encode_image(image_urls)  # also accepts PIL.image, local filenames, dataURI

# Compute similarities
print(cos_sim(text_embeddings[0], text_embeddings[1])) # text embedding similarity
print(cos_sim(text_embeddings[0], image_embeddings[0])) # text-image cross-modal similarity
print(cos_sim(text_embeddings[0], image_embeddings[1])) # text-image cross-modal similarity
print(cos_sim(text_embeddings[1], image_embeddings[0])) # text-image cross-modal similarity
print(cos_sim(text_embeddings[1], image_embeddings[1])) # text-image cross-modal similarity
```


## Performance

### Text-Image Retrieval

| Name             | Flickr Image Retr. R@1 | Flickr Image Retr. R@5 | Flickr Text Retr. R@1 | Flickr Text Retr. R@5 |
|------------------|-------------------------|-------------------------|-----------------------|-----------------------|
| ViT-B-32         | 0.597                   | 0.8398                  | 0.781                 | 0.938                 |
| ViT-B-16         | 0.6216                  | 0.8572                  | 0.822                 | 0.966                 |
| jina-clip        | 0.6748                  | 0.8902                  | 0.811                 | 0.965                 |


| Name             | MSCOCO Image Retr. R@1  | MSCOCO Image Retr. R@5 | MSCOCO Text Retr. R@1 | MSCOCO Text Retr. R@5 |
|------------------|-------------------------|-------------------------|-----------------------|-----------------------|
| ViT-B-32         | 0.342                   | 0.6001                  | 0.5234                | 0.7634                |
| ViT-B-16         | 0.3309                  | 0.5842                  | 0.5242                | 0.767                 |
| jina-clip        | 0.4111                  | 0.6644                  | 0.5544                | 0.7904                |

### Text-Text Retrieval

| Name                  | STS12  | STS15  | STS17  | STS13  | STS14  | STS16  | STS22  | STSBenchmark | SummEval |
|-----------------------|--------|--------|--------|--------|--------|--------|--------|--------------|----------|
| jina-embeddings-v2    | 0.7427 | 0.8755 | 0.8888 | 0.833  | 0.7917 | 0.836  | 0.6346 | 0.8404       | 0.3056   |
| jina-clip             | 0.7352 | 0.8746 | 0.8976 | 0.8323 | 0.7868 | 0.8377 | 0.6583 | 0.8493       | 0.3048   |


| Name               | ArguAna | FiQA2018 | NFCorpus | Quora | SCIDOCS | SciFact | TRECCOVID |
|--------------------|---------|----------|----------|-------|---------|---------|-----------|
| jina-embeddings-v2 | 0.4418  | 0.4158   | 0.3245   | 0.882 | 0.1986  | 0.6668  | 0.6591    |
| jina-clip          | 0.4933  | 0.3827   | 0.3352   | 0.8789| 0.2024  | 0.6734  | 0.7161    |

## Contact

Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.

## Citation

If you find `jina-clip-v1` useful in your research, please cite the following paper:

```bibtex
@misc{2405.20204,
Author = {Andreas Koukounas and Georgios Mastrapas and Michael Günther and Bo Wang and Scott Martens and Isabelle Mohr and Saba Sturua and Mohammad Kalim Akram and Joan Fontanals Martínez and Saahil Ognawala and Susana Guzman and Maximilian Werk and Nan Wang and Han Xiao},
Title = {Jina CLIP: Your CLIP Model Is Also Your Text Retriever},
Year = {2024},
Eprint = {arXiv:2405.20204},
}
```

## FAQ

### I encounter this problem, what should I do?

```
ValueError: The model class you are passing has a `config_class` attribute that is not consistent with the config class you passed (model has <class 'transformers_modules.jinaai.jina-clip-implementation.7f069e2d54d609ef1ad2eb578c7bf07b5a51de41.configuration_clip.JinaCLIPConfig'> and you passed <class 'transformers_modules.jinaai.jina-clip-implementation.7f069e2d54d609ef1ad2eb578c7bf07b5a51de41.configuration_cli.JinaCLIPConfig'>. Fix one of those so they match!
```

There was a bug in Transformers library between 4.40.x to 4.41.1. You can update transformers to >4.41.2 or <=4.40.0

### Givne one query, how can I merge its text-text and text-image cosine similarity?

Our emperical study shows that text-text cosine similarity is normally larger than text-image cosine similarity!
If you want to merge two scores, we recommended 2 ways:

1. weighted average of text-text sim and text-image sim:

```python
combined_scores = sim(text, text) + lambda * sim(text, image)  # optimal lambda depends on your dataset, but in general lambda=2 can be a good choice.
```

2. apply z-score normalization before merging scores:

```python
# pseudo code
query_document_mean = np.mean(cos_sim_text_texts)
query_document_std = np.std(cos_sim_text_texts)
text_image_mean = np.mean(cos_sim_text_images)
text_image_std = np.std(cos_sim_text_images)

query_document_sim_normalized = (cos_sim_query_documents - query_document_mean) / query_document_std
text_image_sim_normalized = (cos_sim_text_images - text_image_mean) / text_image_std
```