--- license: cc-by-nc-4.0 language: - multilingual - af - am - ar - as - az - be - bg - bn - br - bs - ca - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gd - gl - gu - ha - he - hi - hr - hu - hy - id - is - it - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lo - lt - lv - mg - mk - ml - mn - mr - ms - my - ne - nl - 'no' - om - or - pa - pl - ps - pt - ro - ru - sa - sd - si - sk - sl - so - sq - sr - su - sv - sw - ta - te - th - tl - tr - ug - uk - ur - uz - vi - xh - yi - zh inference: false tags: - ColBERT - passage-retrieval ---

Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications.

Trained by Jina AI.

JinaColBERT V2: your multilingual late interaction retriever!

JinaColBERT V2 (`jina-colbert-v2`) is a new model based on the [JinaColBERT V1](https://jina.ai/news/what-is-colbert-and-late-interaction-and-why-they-matter-in-search/) that expands on the capabilities and performance of the [`jina-colbert-v1-en`](https://huggingface.co/jinaai/jina-colbert-v1-en) model. Like the previous release, it has Jina AI’s 8192 token input context and the [improved efficiency, performance](https://jina.ai/news/what-is-colbert-and-late-interaction-and-why-they-matter-in-search/), and [explainability](https://jina.ai/news/ai-explainability-made-easy-how-late-interaction-makes-jina-colbert-transparent/) of token-level embeddings and late interaction. This new release adds new functionality and performance improvements: - Multilingual support for dozens of languages, with strong performance on major global languages. - [Matryoshka embeddings](https://huggingface.co/blog/matryoshka), which allow users to trade between efficiency and precision flexibly. - Superior retrieval performance when compared to the English-only [`jina-colbert-v1-en`](https://huggingface.co/jinaai/jina-colbert-v1-en). JinaColBERT V2 offers three different versions for different embeddings dimensions: [`jinaai/jina-colbert-v2`](https://huggingface.co/jinaai/jina-colbert-v2): 128 dimension embeddings [`jinaai/jina-colbert-v2-96`](https://huggingface.co/jinaai/jina-colbert-v2-96): 96 dimension embeddings [`jinaai/jina-colbert-v2-64`](https://huggingface.co/jinaai/jina-colbert-v2-64): 64 dimension embeddings ## Usage ### Installation `jina-colbert-v2` is trained with flash attention and therefore requires `einops` and `flash_attn` to be installed. To use the model, you could either use the Standford ColBERT library or use the `ragatouille` package that we provide. ```bash pip install -U einops flash_attn pip install -U ragatouille pip install -U colbert-ai ``` ### RAGatouille ```python from ragatouille import RAGPretrainedModel RAG = RAGPretrainedModel.from_pretrained("jinaai/jina-colbert-v2") docs = [ "ColBERT is a novel ranking model that adapts deep LMs for efficient retrieval.", "Jina-ColBERT is a ColBERT-style model but based on JinaBERT so it can support both 8k context length, fast and accurate retrieval.", ] RAG.index(docs, index_name="demo") query = "What does ColBERT do?" results = RAG.search(query) ``` ### Stanford ColBERT ```python from colbert.infra import ColBERTConfig from colbert.modeling.checkpoint import Checkpoint ckpt = Checkpoint("jinaai/jina-colbert-v2", colbert_config=ColBERTConfig()) docs = [ "ColBERT is a novel ranking model that adapts deep LMs for efficient retrieval.", "Jina-ColBERT is a ColBERT-style model but based on JinaBERT so it can support both 8k context length, fast and accurate retrieval.", ] query_vectors = ckpt.queryFromText(docs, bsize=2) ``` ## Evaluation Results ### Retrieval Benchmarks #### BEIR | **NDCG@10** | **jina-colbert-v2** | **jina-colbert-v1** | **ColBERTv2.0** | **BM25** | |--------------------|---------------------|---------------------|-----------------|----------| | **avg** | 0.531 | 0.502 | 0.496 | 0.440 | | **nfcorpus** | 0.346 | 0.338 | 0.337 | 0.325 | | **fiqa** | 0.408 | 0.368 | 0.354 | 0.236 | | **trec-covid** | 0.834 | 0.750 | 0.726 | 0.656 | | **arguana** | 0.366 | 0.494 | 0.465 | 0.315 | | **quora** | 0.887 | 0.823 | 0.855 | 0.789 | | **scidocs** | 0.186 | 0.169 | 0.154 | 0.158 | | **scifact** | 0.678 | 0.701 | 0.689 | 0.665 | | **webis-touche** | 0.274 | 0.270 | 0.260 | 0.367 | | **dbpedia-entity** | 0.471 | 0.413 | 0.452 | 0.313 | | **fever** | 0.805 | 0.795 | 0.785 | 0.753 | | **climate-fever** | 0.239 | 0.196 | 0.176 | 0.213 | | **hotpotqa** | 0.766 | 0.656 | 0.675 | 0.603 | | **nq** | 0.640 | 0.549 | 0.524 | 0.329 | #### MS MARCO Passage Retrieval | **MRR@10** | **jina-colbert-v2** | **jina-colbert-v1** | **ColBERTv2.0** | **BM25** | |-------------|---------------------|---------------------|-----------------|----------| | **MSMARCO** | 0.396 | 0.390 | 0.397 | 0.187 | ### Multilingual Benchmarks #### MIRACLE | **NDCG@10** | **jina-colbert-v2** | **mDPR (zero shot)** | |---------|---------------------|----------------------| | **avg** | 0.627 | 0.427 | | **ar** | 0.753 | 0.499 | | **bn** | 0.750 | 0.443 | | **de** | 0.504 | 0.490 | | **es** | 0.538 | 0.478 | | **en** | 0.570 | 0.394 | | **fa** | 0.563 | 0.480 | | **fi** | 0.740 | 0.472 | | **fr** | 0.541 | 0.435 | | **hi** | 0.600 | 0.383 | | **id** | 0.547 | 0.272 | | **ja** | 0.632 | 0.439 | | **ko** | 0.671 | 0.419 | | **ru** | 0.643 | 0.407 | | **sw** | 0.499 | 0.299 | | **te** | 0.742 | 0.356 | | **th** | 0.772 | 0.358 | | **yo** | 0.623 | 0.396 | | **zh** | 0.523 | 0.512 | #### mMARCO | **MRR@10** | **jina-colbert-v2** | **BM-25** | **ColBERT-XM** | |------------|---------------------|-----------|----------------| | **avg** | 0.313 | 0.141 | 0.254 | | **ar** | 0.272 | 0.111 | 0.195 | | **de** | 0.331 | 0.136 | 0.270 | | **nl** | 0.330 | 0.140 | 0.275 | | **es** | 0.341 | 0.158 | 0.285 | | **fr** | 0.335 | 0.155 | 0.269 | | **hi** | 0.309 | 0.134 | 0.238 | | **id** | 0.319 | 0.149 | 0.263 | | **it** | 0.337 | 0.153 | 0.265 | | **ja** | 0.276 | 0.141 | 0.241 | | **pt** | 0.337 | 0.152 | 0.276 | | **ru** | 0.298 | 0.124 | 0.251 | | **vi** | 0.287 | 0.136 | 0.226 | | **zh** | 0.302 | 0.116 | 0.246 | ### Matryoshka Representation Benchmarks #### BEIR | **NDCG@10** | **dim=128** | **dim=96** | **dim=64** | |----------------|-------------|------------|------------| | **avg** | 0.599 | 0.591 | 0.589 | | **nfcorpus** | 0.346 | 0.340 | 0.347 | | **fiqa** | 0.408 | 0.404 | 0.404 | | **trec-covid** | 0.834 | 0.808 | 0.805 | | **hotpotqa** | 0.766 | 0.764 | 0.756 | | **nq** | 0.640 | 0.640 | 0.635 | #### MSMARCO | **MRR@10** | **dim=128** | **dim=96** | **dim=64** | |----------------|-------------|------------|------------| | **msmarco** | 0.396 | 0.391 | 0.388 | ## Other Models Additionally, we provide the following embedding models, you can also use them for retrieval. - [`jina-embeddings-v2-base-en`](https://huggingface.co/jinaai/jina-embeddings-v2-base-en): 137 million parameters. - [`jina-embeddings-v2-base-zh`](https://huggingface.co/jinaai/jina-embeddings-v2-base-zh): 161 million parameters Chinese-English bilingual model. - [`jina-embeddings-v2-base-de`](https://huggingface.co/jinaai/jina-embeddings-v2-base-de): 161 million parameters German-English bilingual model. - [`jina-embeddings-v2-base-es`](https://huggingface.co/jinaai/jina-embeddings-v2-base-es): 161 million parameters Spanish-English bilingual model. - [`jina-reranker-v2`](https://huggingface.co/jinaai/jina-reranker-v2-base-multilingual): multilingual reranker model. - [`jina-clip-v1`](https://huggingface.co/jinaai/jina-clip-v1): English multimodal (text-image) embedding model. ## Contact Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.