|
--- |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- mteb |
|
language: |
|
- es |
|
- en |
|
inference: false |
|
license: apache-2.0 |
|
model-index: |
|
- name: jina-embeddings-v2-base-es |
|
results: |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en) |
|
config: en |
|
split: test |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
metrics: |
|
- type: accuracy |
|
value: 74.25373134328358 |
|
- type: ap |
|
value: 37.05201236793268 |
|
- type: f1 |
|
value: 68.16770391201077 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_polarity |
|
name: MTEB AmazonPolarityClassification |
|
config: default |
|
split: test |
|
revision: e2d317d38cd51312af73b3d32a06d1a08b442046 |
|
metrics: |
|
- type: accuracy |
|
value: 78.30885 |
|
- type: ap |
|
value: 73.01622441156408 |
|
- type: f1 |
|
value: 78.20769284466313 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (en) |
|
config: en |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 38.324 |
|
- type: f1 |
|
value: 37.89543008761673 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (es) |
|
config: es |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 38.678000000000004 |
|
- type: f1 |
|
value: 38.122639506976 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: arguana |
|
name: MTEB ArguAna |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 23.968999999999998 |
|
- type: map_at_10 |
|
value: 40.691 |
|
- type: map_at_100 |
|
value: 41.713 |
|
- type: map_at_1000 |
|
value: 41.719 |
|
- type: map_at_3 |
|
value: 35.42 |
|
- type: map_at_5 |
|
value: 38.442 |
|
- type: mrr_at_1 |
|
value: 24.395 |
|
- type: mrr_at_10 |
|
value: 40.853 |
|
- type: mrr_at_100 |
|
value: 41.869 |
|
- type: mrr_at_1000 |
|
value: 41.874 |
|
- type: mrr_at_3 |
|
value: 35.68 |
|
- type: mrr_at_5 |
|
value: 38.572 |
|
- type: ndcg_at_1 |
|
value: 23.968999999999998 |
|
- type: ndcg_at_10 |
|
value: 50.129999999999995 |
|
- type: ndcg_at_100 |
|
value: 54.364000000000004 |
|
- type: ndcg_at_1000 |
|
value: 54.494 |
|
- type: ndcg_at_3 |
|
value: 39.231 |
|
- type: ndcg_at_5 |
|
value: 44.694 |
|
- type: precision_at_1 |
|
value: 23.968999999999998 |
|
- type: precision_at_10 |
|
value: 8.036999999999999 |
|
- type: precision_at_100 |
|
value: 0.9860000000000001 |
|
- type: precision_at_1000 |
|
value: 0.1 |
|
- type: precision_at_3 |
|
value: 16.761 |
|
- type: precision_at_5 |
|
value: 12.717 |
|
- type: recall_at_1 |
|
value: 23.968999999999998 |
|
- type: recall_at_10 |
|
value: 80.36999999999999 |
|
- type: recall_at_100 |
|
value: 98.578 |
|
- type: recall_at_1000 |
|
value: 99.57300000000001 |
|
- type: recall_at_3 |
|
value: 50.28399999999999 |
|
- type: recall_at_5 |
|
value: 63.585 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-p2p |
|
name: MTEB ArxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d |
|
metrics: |
|
- type: v_measure |
|
value: 41.54886683150053 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-s2s |
|
name: MTEB ArxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 |
|
metrics: |
|
- type: v_measure |
|
value: 32.186028697637234 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/askubuntudupquestions-reranking |
|
name: MTEB AskUbuntuDupQuestions |
|
config: default |
|
split: test |
|
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 |
|
metrics: |
|
- type: map |
|
value: 61.19432643698725 |
|
- type: mrr |
|
value: 75.28646176845622 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/biosses-sts |
|
name: MTEB BIOSSES |
|
config: default |
|
split: test |
|
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 86.3828259381228 |
|
- type: cos_sim_spearman |
|
value: 83.04647058342209 |
|
- type: euclidean_pearson |
|
value: 84.02895346096244 |
|
- type: euclidean_spearman |
|
value: 82.34524978635342 |
|
- type: manhattan_pearson |
|
value: 84.35030723233426 |
|
- type: manhattan_spearman |
|
value: 83.17177464337936 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/banking77 |
|
name: MTEB Banking77Classification |
|
config: default |
|
split: test |
|
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 |
|
metrics: |
|
- type: accuracy |
|
value: 85.25649350649351 |
|
- type: f1 |
|
value: 85.22320474023192 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: jinaai/big-patent-clustering |
|
name: MTEB BigPatentClustering |
|
config: default |
|
split: test |
|
revision: 62d5330920bca426ce9d3c76ea914f15fc83e891 |
|
metrics: |
|
- type: v_measure |
|
value: 20.42929408254094 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-p2p |
|
name: MTEB BiorxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 |
|
metrics: |
|
- type: v_measure |
|
value: 35.165318177498136 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-s2s |
|
name: MTEB BiorxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 |
|
metrics: |
|
- type: v_measure |
|
value: 28.89030154229562 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackAndroidRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 30.119 |
|
- type: map_at_10 |
|
value: 42.092 |
|
- type: map_at_100 |
|
value: 43.506 |
|
- type: map_at_1000 |
|
value: 43.631 |
|
- type: map_at_3 |
|
value: 38.373000000000005 |
|
- type: map_at_5 |
|
value: 40.501 |
|
- type: mrr_at_1 |
|
value: 38.196999999999996 |
|
- type: mrr_at_10 |
|
value: 48.237 |
|
- type: mrr_at_100 |
|
value: 48.914 |
|
- type: mrr_at_1000 |
|
value: 48.959 |
|
- type: mrr_at_3 |
|
value: 45.279 |
|
- type: mrr_at_5 |
|
value: 47.11 |
|
- type: ndcg_at_1 |
|
value: 38.196999999999996 |
|
- type: ndcg_at_10 |
|
value: 48.849 |
|
- type: ndcg_at_100 |
|
value: 53.713 |
|
- type: ndcg_at_1000 |
|
value: 55.678000000000004 |
|
- type: ndcg_at_3 |
|
value: 43.546 |
|
- type: ndcg_at_5 |
|
value: 46.009 |
|
- type: precision_at_1 |
|
value: 38.196999999999996 |
|
- type: precision_at_10 |
|
value: 9.642000000000001 |
|
- type: precision_at_100 |
|
value: 1.5190000000000001 |
|
- type: precision_at_1000 |
|
value: 0.199 |
|
- type: precision_at_3 |
|
value: 21.65 |
|
- type: precision_at_5 |
|
value: 15.708 |
|
- type: recall_at_1 |
|
value: 30.119 |
|
- type: recall_at_10 |
|
value: 61.788 |
|
- type: recall_at_100 |
|
value: 82.14399999999999 |
|
- type: recall_at_1000 |
|
value: 95.003 |
|
- type: recall_at_3 |
|
value: 45.772 |
|
- type: recall_at_5 |
|
value: 53.04600000000001 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackEnglishRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 28.979 |
|
- type: map_at_10 |
|
value: 37.785000000000004 |
|
- type: map_at_100 |
|
value: 38.945 |
|
- type: map_at_1000 |
|
value: 39.071 |
|
- type: map_at_3 |
|
value: 35.083999999999996 |
|
- type: map_at_5 |
|
value: 36.571999999999996 |
|
- type: mrr_at_1 |
|
value: 36.242000000000004 |
|
- type: mrr_at_10 |
|
value: 43.552 |
|
- type: mrr_at_100 |
|
value: 44.228 |
|
- type: mrr_at_1000 |
|
value: 44.275999999999996 |
|
- type: mrr_at_3 |
|
value: 41.359 |
|
- type: mrr_at_5 |
|
value: 42.598 |
|
- type: ndcg_at_1 |
|
value: 36.242000000000004 |
|
- type: ndcg_at_10 |
|
value: 42.94 |
|
- type: ndcg_at_100 |
|
value: 47.343 |
|
- type: ndcg_at_1000 |
|
value: 49.538 |
|
- type: ndcg_at_3 |
|
value: 39.086999999999996 |
|
- type: ndcg_at_5 |
|
value: 40.781 |
|
- type: precision_at_1 |
|
value: 36.242000000000004 |
|
- type: precision_at_10 |
|
value: 7.954999999999999 |
|
- type: precision_at_100 |
|
value: 1.303 |
|
- type: precision_at_1000 |
|
value: 0.178 |
|
- type: precision_at_3 |
|
value: 18.556 |
|
- type: precision_at_5 |
|
value: 13.145999999999999 |
|
- type: recall_at_1 |
|
value: 28.979 |
|
- type: recall_at_10 |
|
value: 51.835 |
|
- type: recall_at_100 |
|
value: 70.47 |
|
- type: recall_at_1000 |
|
value: 84.68299999999999 |
|
- type: recall_at_3 |
|
value: 40.410000000000004 |
|
- type: recall_at_5 |
|
value: 45.189 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGamingRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 37.878 |
|
- type: map_at_10 |
|
value: 49.903 |
|
- type: map_at_100 |
|
value: 50.797000000000004 |
|
- type: map_at_1000 |
|
value: 50.858000000000004 |
|
- type: map_at_3 |
|
value: 46.526 |
|
- type: map_at_5 |
|
value: 48.615 |
|
- type: mrr_at_1 |
|
value: 43.135 |
|
- type: mrr_at_10 |
|
value: 53.067 |
|
- type: mrr_at_100 |
|
value: 53.668000000000006 |
|
- type: mrr_at_1000 |
|
value: 53.698 |
|
- type: mrr_at_3 |
|
value: 50.449 |
|
- type: mrr_at_5 |
|
value: 52.117000000000004 |
|
- type: ndcg_at_1 |
|
value: 43.135 |
|
- type: ndcg_at_10 |
|
value: 55.641 |
|
- type: ndcg_at_100 |
|
value: 59.427 |
|
- type: ndcg_at_1000 |
|
value: 60.655 |
|
- type: ndcg_at_3 |
|
value: 49.969 |
|
- type: ndcg_at_5 |
|
value: 53.075 |
|
- type: precision_at_1 |
|
value: 43.135 |
|
- type: precision_at_10 |
|
value: 8.997 |
|
- type: precision_at_100 |
|
value: 1.1809999999999998 |
|
- type: precision_at_1000 |
|
value: 0.133 |
|
- type: precision_at_3 |
|
value: 22.215 |
|
- type: precision_at_5 |
|
value: 15.586 |
|
- type: recall_at_1 |
|
value: 37.878 |
|
- type: recall_at_10 |
|
value: 69.405 |
|
- type: recall_at_100 |
|
value: 86.262 |
|
- type: recall_at_1000 |
|
value: 95.012 |
|
- type: recall_at_3 |
|
value: 54.458 |
|
- type: recall_at_5 |
|
value: 61.965 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGisRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 24.853 |
|
- type: map_at_10 |
|
value: 32.402 |
|
- type: map_at_100 |
|
value: 33.417 |
|
- type: map_at_1000 |
|
value: 33.498 |
|
- type: map_at_3 |
|
value: 30.024 |
|
- type: map_at_5 |
|
value: 31.407 |
|
- type: mrr_at_1 |
|
value: 26.667 |
|
- type: mrr_at_10 |
|
value: 34.399 |
|
- type: mrr_at_100 |
|
value: 35.284 |
|
- type: mrr_at_1000 |
|
value: 35.345 |
|
- type: mrr_at_3 |
|
value: 32.109 |
|
- type: mrr_at_5 |
|
value: 33.375 |
|
- type: ndcg_at_1 |
|
value: 26.667 |
|
- type: ndcg_at_10 |
|
value: 36.854 |
|
- type: ndcg_at_100 |
|
value: 42.196 |
|
- type: ndcg_at_1000 |
|
value: 44.303 |
|
- type: ndcg_at_3 |
|
value: 32.186 |
|
- type: ndcg_at_5 |
|
value: 34.512 |
|
- type: precision_at_1 |
|
value: 26.667 |
|
- type: precision_at_10 |
|
value: 5.559 |
|
- type: precision_at_100 |
|
value: 0.88 |
|
- type: precision_at_1000 |
|
value: 0.109 |
|
- type: precision_at_3 |
|
value: 13.333 |
|
- type: precision_at_5 |
|
value: 9.379 |
|
- type: recall_at_1 |
|
value: 24.853 |
|
- type: recall_at_10 |
|
value: 48.636 |
|
- type: recall_at_100 |
|
value: 73.926 |
|
- type: recall_at_1000 |
|
value: 89.94 |
|
- type: recall_at_3 |
|
value: 36.266 |
|
- type: recall_at_5 |
|
value: 41.723 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackMathematicaRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 14.963999999999999 |
|
- type: map_at_10 |
|
value: 22.591 |
|
- type: map_at_100 |
|
value: 23.735999999999997 |
|
- type: map_at_1000 |
|
value: 23.868000000000002 |
|
- type: map_at_3 |
|
value: 20.093 |
|
- type: map_at_5 |
|
value: 21.499 |
|
- type: mrr_at_1 |
|
value: 18.407999999999998 |
|
- type: mrr_at_10 |
|
value: 26.863 |
|
- type: mrr_at_100 |
|
value: 27.87 |
|
- type: mrr_at_1000 |
|
value: 27.947 |
|
- type: mrr_at_3 |
|
value: 24.254 |
|
- type: mrr_at_5 |
|
value: 25.784000000000002 |
|
- type: ndcg_at_1 |
|
value: 18.407999999999998 |
|
- type: ndcg_at_10 |
|
value: 27.549 |
|
- type: ndcg_at_100 |
|
value: 33.188 |
|
- type: ndcg_at_1000 |
|
value: 36.312 |
|
- type: ndcg_at_3 |
|
value: 22.862 |
|
- type: ndcg_at_5 |
|
value: 25.130999999999997 |
|
- type: precision_at_1 |
|
value: 18.407999999999998 |
|
- type: precision_at_10 |
|
value: 5.087 |
|
- type: precision_at_100 |
|
value: 0.923 |
|
- type: precision_at_1000 |
|
value: 0.133 |
|
- type: precision_at_3 |
|
value: 10.987 |
|
- type: precision_at_5 |
|
value: 8.209 |
|
- type: recall_at_1 |
|
value: 14.963999999999999 |
|
- type: recall_at_10 |
|
value: 38.673 |
|
- type: recall_at_100 |
|
value: 63.224999999999994 |
|
- type: recall_at_1000 |
|
value: 85.443 |
|
- type: recall_at_3 |
|
value: 25.840000000000003 |
|
- type: recall_at_5 |
|
value: 31.503999999999998 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackPhysicsRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 27.861000000000004 |
|
- type: map_at_10 |
|
value: 37.562 |
|
- type: map_at_100 |
|
value: 38.906 |
|
- type: map_at_1000 |
|
value: 39.021 |
|
- type: map_at_3 |
|
value: 34.743 |
|
- type: map_at_5 |
|
value: 36.168 |
|
- type: mrr_at_1 |
|
value: 34.455999999999996 |
|
- type: mrr_at_10 |
|
value: 43.428 |
|
- type: mrr_at_100 |
|
value: 44.228 |
|
- type: mrr_at_1000 |
|
value: 44.278 |
|
- type: mrr_at_3 |
|
value: 41.001 |
|
- type: mrr_at_5 |
|
value: 42.315000000000005 |
|
- type: ndcg_at_1 |
|
value: 34.455999999999996 |
|
- type: ndcg_at_10 |
|
value: 43.477 |
|
- type: ndcg_at_100 |
|
value: 48.953 |
|
- type: ndcg_at_1000 |
|
value: 51.19200000000001 |
|
- type: ndcg_at_3 |
|
value: 38.799 |
|
- type: ndcg_at_5 |
|
value: 40.743 |
|
- type: precision_at_1 |
|
value: 34.455999999999996 |
|
- type: precision_at_10 |
|
value: 7.902000000000001 |
|
- type: precision_at_100 |
|
value: 1.244 |
|
- type: precision_at_1000 |
|
value: 0.161 |
|
- type: precision_at_3 |
|
value: 18.511 |
|
- type: precision_at_5 |
|
value: 12.859000000000002 |
|
- type: recall_at_1 |
|
value: 27.861000000000004 |
|
- type: recall_at_10 |
|
value: 55.36 |
|
- type: recall_at_100 |
|
value: 78.384 |
|
- type: recall_at_1000 |
|
value: 93.447 |
|
- type: recall_at_3 |
|
value: 41.926 |
|
- type: recall_at_5 |
|
value: 47.257 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackProgrammersRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 26.375 |
|
- type: map_at_10 |
|
value: 35.571000000000005 |
|
- type: map_at_100 |
|
value: 36.785000000000004 |
|
- type: map_at_1000 |
|
value: 36.905 |
|
- type: map_at_3 |
|
value: 32.49 |
|
- type: map_at_5 |
|
value: 34.123999999999995 |
|
- type: mrr_at_1 |
|
value: 32.647999999999996 |
|
- type: mrr_at_10 |
|
value: 40.598 |
|
- type: mrr_at_100 |
|
value: 41.484 |
|
- type: mrr_at_1000 |
|
value: 41.546 |
|
- type: mrr_at_3 |
|
value: 37.9 |
|
- type: mrr_at_5 |
|
value: 39.401 |
|
- type: ndcg_at_1 |
|
value: 32.647999999999996 |
|
- type: ndcg_at_10 |
|
value: 41.026 |
|
- type: ndcg_at_100 |
|
value: 46.365 |
|
- type: ndcg_at_1000 |
|
value: 48.876 |
|
- type: ndcg_at_3 |
|
value: 35.843 |
|
- type: ndcg_at_5 |
|
value: 38.118 |
|
- type: precision_at_1 |
|
value: 32.647999999999996 |
|
- type: precision_at_10 |
|
value: 7.443 |
|
- type: precision_at_100 |
|
value: 1.18 |
|
- type: precision_at_1000 |
|
value: 0.158 |
|
- type: precision_at_3 |
|
value: 16.819 |
|
- type: precision_at_5 |
|
value: 11.985999999999999 |
|
- type: recall_at_1 |
|
value: 26.375 |
|
- type: recall_at_10 |
|
value: 52.471000000000004 |
|
- type: recall_at_100 |
|
value: 75.354 |
|
- type: recall_at_1000 |
|
value: 92.35 |
|
- type: recall_at_3 |
|
value: 37.893 |
|
- type: recall_at_5 |
|
value: 43.935 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 25.012666666666668 |
|
- type: map_at_10 |
|
value: 33.685833333333335 |
|
- type: map_at_100 |
|
value: 34.849250000000005 |
|
- type: map_at_1000 |
|
value: 34.970083333333335 |
|
- type: map_at_3 |
|
value: 31.065083333333334 |
|
- type: map_at_5 |
|
value: 32.494416666666666 |
|
- type: mrr_at_1 |
|
value: 29.772666666666662 |
|
- type: mrr_at_10 |
|
value: 37.824666666666666 |
|
- type: mrr_at_100 |
|
value: 38.66741666666666 |
|
- type: mrr_at_1000 |
|
value: 38.72916666666666 |
|
- type: mrr_at_3 |
|
value: 35.54575 |
|
- type: mrr_at_5 |
|
value: 36.81524999999999 |
|
- type: ndcg_at_1 |
|
value: 29.772666666666662 |
|
- type: ndcg_at_10 |
|
value: 38.78241666666666 |
|
- type: ndcg_at_100 |
|
value: 43.84591666666667 |
|
- type: ndcg_at_1000 |
|
value: 46.275416666666665 |
|
- type: ndcg_at_3 |
|
value: 34.33416666666667 |
|
- type: ndcg_at_5 |
|
value: 36.345166666666664 |
|
- type: precision_at_1 |
|
value: 29.772666666666662 |
|
- type: precision_at_10 |
|
value: 6.794916666666667 |
|
- type: precision_at_100 |
|
value: 1.106416666666667 |
|
- type: precision_at_1000 |
|
value: 0.15033333333333335 |
|
- type: precision_at_3 |
|
value: 15.815083333333336 |
|
- type: precision_at_5 |
|
value: 11.184166666666664 |
|
- type: recall_at_1 |
|
value: 25.012666666666668 |
|
- type: recall_at_10 |
|
value: 49.748500000000014 |
|
- type: recall_at_100 |
|
value: 72.11341666666667 |
|
- type: recall_at_1000 |
|
value: 89.141 |
|
- type: recall_at_3 |
|
value: 37.242999999999995 |
|
- type: recall_at_5 |
|
value: 42.49033333333333 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackStatsRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 23.177 |
|
- type: map_at_10 |
|
value: 29.310000000000002 |
|
- type: map_at_100 |
|
value: 30.188 |
|
- type: map_at_1000 |
|
value: 30.29 |
|
- type: map_at_3 |
|
value: 27.356 |
|
- type: map_at_5 |
|
value: 28.410999999999998 |
|
- type: mrr_at_1 |
|
value: 26.074 |
|
- type: mrr_at_10 |
|
value: 32.002 |
|
- type: mrr_at_100 |
|
value: 32.838 |
|
- type: mrr_at_1000 |
|
value: 32.909 |
|
- type: mrr_at_3 |
|
value: 30.317 |
|
- type: mrr_at_5 |
|
value: 31.222 |
|
- type: ndcg_at_1 |
|
value: 26.074 |
|
- type: ndcg_at_10 |
|
value: 32.975 |
|
- type: ndcg_at_100 |
|
value: 37.621 |
|
- type: ndcg_at_1000 |
|
value: 40.253 |
|
- type: ndcg_at_3 |
|
value: 29.452 |
|
- type: ndcg_at_5 |
|
value: 31.020999999999997 |
|
- type: precision_at_1 |
|
value: 26.074 |
|
- type: precision_at_10 |
|
value: 5.077 |
|
- type: precision_at_100 |
|
value: 0.8049999999999999 |
|
- type: precision_at_1000 |
|
value: 0.11100000000000002 |
|
- type: precision_at_3 |
|
value: 12.526000000000002 |
|
- type: precision_at_5 |
|
value: 8.588999999999999 |
|
- type: recall_at_1 |
|
value: 23.177 |
|
- type: recall_at_10 |
|
value: 41.613 |
|
- type: recall_at_100 |
|
value: 63.287000000000006 |
|
- type: recall_at_1000 |
|
value: 83.013 |
|
- type: recall_at_3 |
|
value: 31.783 |
|
- type: recall_at_5 |
|
value: 35.769 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackTexRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 15.856 |
|
- type: map_at_10 |
|
value: 22.651 |
|
- type: map_at_100 |
|
value: 23.649 |
|
- type: map_at_1000 |
|
value: 23.783 |
|
- type: map_at_3 |
|
value: 20.591 |
|
- type: map_at_5 |
|
value: 21.684 |
|
- type: mrr_at_1 |
|
value: 19.408 |
|
- type: mrr_at_10 |
|
value: 26.51 |
|
- type: mrr_at_100 |
|
value: 27.356 |
|
- type: mrr_at_1000 |
|
value: 27.439999999999998 |
|
- type: mrr_at_3 |
|
value: 24.547 |
|
- type: mrr_at_5 |
|
value: 25.562 |
|
- type: ndcg_at_1 |
|
value: 19.408 |
|
- type: ndcg_at_10 |
|
value: 27.072000000000003 |
|
- type: ndcg_at_100 |
|
value: 31.980999999999998 |
|
- type: ndcg_at_1000 |
|
value: 35.167 |
|
- type: ndcg_at_3 |
|
value: 23.338 |
|
- type: ndcg_at_5 |
|
value: 24.94 |
|
- type: precision_at_1 |
|
value: 19.408 |
|
- type: precision_at_10 |
|
value: 4.9590000000000005 |
|
- type: precision_at_100 |
|
value: 0.8710000000000001 |
|
- type: precision_at_1000 |
|
value: 0.132 |
|
- type: precision_at_3 |
|
value: 11.138 |
|
- type: precision_at_5 |
|
value: 7.949000000000001 |
|
- type: recall_at_1 |
|
value: 15.856 |
|
- type: recall_at_10 |
|
value: 36.578 |
|
- type: recall_at_100 |
|
value: 58.89 |
|
- type: recall_at_1000 |
|
value: 81.743 |
|
- type: recall_at_3 |
|
value: 25.94 |
|
- type: recall_at_5 |
|
value: 30.153999999999996 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackUnixRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 25.892 |
|
- type: map_at_10 |
|
value: 33.899 |
|
- type: map_at_100 |
|
value: 34.955000000000005 |
|
- type: map_at_1000 |
|
value: 35.066 |
|
- type: map_at_3 |
|
value: 31.41 |
|
- type: map_at_5 |
|
value: 32.669 |
|
- type: mrr_at_1 |
|
value: 30.224 |
|
- type: mrr_at_10 |
|
value: 37.936 |
|
- type: mrr_at_100 |
|
value: 38.777 |
|
- type: mrr_at_1000 |
|
value: 38.85 |
|
- type: mrr_at_3 |
|
value: 35.821 |
|
- type: mrr_at_5 |
|
value: 36.894 |
|
- type: ndcg_at_1 |
|
value: 30.224 |
|
- type: ndcg_at_10 |
|
value: 38.766 |
|
- type: ndcg_at_100 |
|
value: 43.806 |
|
- type: ndcg_at_1000 |
|
value: 46.373999999999995 |
|
- type: ndcg_at_3 |
|
value: 34.325 |
|
- type: ndcg_at_5 |
|
value: 36.096000000000004 |
|
- type: precision_at_1 |
|
value: 30.224 |
|
- type: precision_at_10 |
|
value: 6.446000000000001 |
|
- type: precision_at_100 |
|
value: 1.0 |
|
- type: precision_at_1000 |
|
value: 0.133 |
|
- type: precision_at_3 |
|
value: 15.392 |
|
- type: precision_at_5 |
|
value: 10.671999999999999 |
|
- type: recall_at_1 |
|
value: 25.892 |
|
- type: recall_at_10 |
|
value: 49.573 |
|
- type: recall_at_100 |
|
value: 71.885 |
|
- type: recall_at_1000 |
|
value: 89.912 |
|
- type: recall_at_3 |
|
value: 37.226 |
|
- type: recall_at_5 |
|
value: 41.74 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWebmastersRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 23.915 |
|
- type: map_at_10 |
|
value: 33.613 |
|
- type: map_at_100 |
|
value: 35.333999999999996 |
|
- type: map_at_1000 |
|
value: 35.563 |
|
- type: map_at_3 |
|
value: 31.203999999999997 |
|
- type: map_at_5 |
|
value: 32.479 |
|
- type: mrr_at_1 |
|
value: 29.447000000000003 |
|
- type: mrr_at_10 |
|
value: 38.440000000000005 |
|
- type: mrr_at_100 |
|
value: 39.459 |
|
- type: mrr_at_1000 |
|
value: 39.513999999999996 |
|
- type: mrr_at_3 |
|
value: 36.495 |
|
- type: mrr_at_5 |
|
value: 37.592 |
|
- type: ndcg_at_1 |
|
value: 29.447000000000003 |
|
- type: ndcg_at_10 |
|
value: 39.341 |
|
- type: ndcg_at_100 |
|
value: 45.382 |
|
- type: ndcg_at_1000 |
|
value: 47.921 |
|
- type: ndcg_at_3 |
|
value: 35.671 |
|
- type: ndcg_at_5 |
|
value: 37.299 |
|
- type: precision_at_1 |
|
value: 29.447000000000003 |
|
- type: precision_at_10 |
|
value: 7.648000000000001 |
|
- type: precision_at_100 |
|
value: 1.567 |
|
- type: precision_at_1000 |
|
value: 0.241 |
|
- type: precision_at_3 |
|
value: 17.194000000000003 |
|
- type: precision_at_5 |
|
value: 12.253 |
|
- type: recall_at_1 |
|
value: 23.915 |
|
- type: recall_at_10 |
|
value: 49.491 |
|
- type: recall_at_100 |
|
value: 76.483 |
|
- type: recall_at_1000 |
|
value: 92.674 |
|
- type: recall_at_3 |
|
value: 38.878 |
|
- type: recall_at_5 |
|
value: 43.492 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWordpressRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 20.283 |
|
- type: map_at_10 |
|
value: 26.851000000000003 |
|
- type: map_at_100 |
|
value: 27.973 |
|
- type: map_at_1000 |
|
value: 28.087 |
|
- type: map_at_3 |
|
value: 24.887 |
|
- type: map_at_5 |
|
value: 25.804 |
|
- type: mrr_at_1 |
|
value: 22.366 |
|
- type: mrr_at_10 |
|
value: 28.864 |
|
- type: mrr_at_100 |
|
value: 29.903000000000002 |
|
- type: mrr_at_1000 |
|
value: 29.988 |
|
- type: mrr_at_3 |
|
value: 27.017999999999997 |
|
- type: mrr_at_5 |
|
value: 27.813 |
|
- type: ndcg_at_1 |
|
value: 22.366 |
|
- type: ndcg_at_10 |
|
value: 30.898999999999997 |
|
- type: ndcg_at_100 |
|
value: 36.176 |
|
- type: ndcg_at_1000 |
|
value: 39.036 |
|
- type: ndcg_at_3 |
|
value: 26.932000000000002 |
|
- type: ndcg_at_5 |
|
value: 28.416999999999998 |
|
- type: precision_at_1 |
|
value: 22.366 |
|
- type: precision_at_10 |
|
value: 4.824 |
|
- type: precision_at_100 |
|
value: 0.804 |
|
- type: precision_at_1000 |
|
value: 0.116 |
|
- type: precision_at_3 |
|
value: 11.459999999999999 |
|
- type: precision_at_5 |
|
value: 7.8740000000000006 |
|
- type: recall_at_1 |
|
value: 20.283 |
|
- type: recall_at_10 |
|
value: 41.559000000000005 |
|
- type: recall_at_100 |
|
value: 65.051 |
|
- type: recall_at_1000 |
|
value: 86.47200000000001 |
|
- type: recall_at_3 |
|
value: 30.524 |
|
- type: recall_at_5 |
|
value: 34.11 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: climate-fever |
|
name: MTEB ClimateFEVER |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 11.326 |
|
- type: map_at_10 |
|
value: 19.357 |
|
- type: map_at_100 |
|
value: 21.014 |
|
- type: map_at_1000 |
|
value: 21.188000000000002 |
|
- type: map_at_3 |
|
value: 16.305 |
|
- type: map_at_5 |
|
value: 17.886 |
|
- type: mrr_at_1 |
|
value: 24.820999999999998 |
|
- type: mrr_at_10 |
|
value: 36.150999999999996 |
|
- type: mrr_at_100 |
|
value: 37.080999999999996 |
|
- type: mrr_at_1000 |
|
value: 37.123 |
|
- type: mrr_at_3 |
|
value: 32.952999999999996 |
|
- type: mrr_at_5 |
|
value: 34.917 |
|
- type: ndcg_at_1 |
|
value: 24.820999999999998 |
|
- type: ndcg_at_10 |
|
value: 27.131 |
|
- type: ndcg_at_100 |
|
value: 33.841 |
|
- type: ndcg_at_1000 |
|
value: 37.159 |
|
- type: ndcg_at_3 |
|
value: 22.311 |
|
- type: ndcg_at_5 |
|
value: 24.026 |
|
- type: precision_at_1 |
|
value: 24.820999999999998 |
|
- type: precision_at_10 |
|
value: 8.450000000000001 |
|
- type: precision_at_100 |
|
value: 1.557 |
|
- type: precision_at_1000 |
|
value: 0.218 |
|
- type: precision_at_3 |
|
value: 16.612 |
|
- type: precision_at_5 |
|
value: 12.808 |
|
- type: recall_at_1 |
|
value: 11.326 |
|
- type: recall_at_10 |
|
value: 32.548 |
|
- type: recall_at_100 |
|
value: 55.803000000000004 |
|
- type: recall_at_1000 |
|
value: 74.636 |
|
- type: recall_at_3 |
|
value: 20.549 |
|
- type: recall_at_5 |
|
value: 25.514 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: dbpedia-entity |
|
name: MTEB DBPedia |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 7.481 |
|
- type: map_at_10 |
|
value: 15.043999999999999 |
|
- type: map_at_100 |
|
value: 20.194000000000003 |
|
- type: map_at_1000 |
|
value: 21.423000000000002 |
|
- type: map_at_3 |
|
value: 11.238 |
|
- type: map_at_5 |
|
value: 12.828999999999999 |
|
- type: mrr_at_1 |
|
value: 54.50000000000001 |
|
- type: mrr_at_10 |
|
value: 64.713 |
|
- type: mrr_at_100 |
|
value: 65.216 |
|
- type: mrr_at_1000 |
|
value: 65.23 |
|
- type: mrr_at_3 |
|
value: 62.74999999999999 |
|
- type: mrr_at_5 |
|
value: 63.87500000000001 |
|
- type: ndcg_at_1 |
|
value: 43.375 |
|
- type: ndcg_at_10 |
|
value: 32.631 |
|
- type: ndcg_at_100 |
|
value: 36.338 |
|
- type: ndcg_at_1000 |
|
value: 43.541000000000004 |
|
- type: ndcg_at_3 |
|
value: 36.746 |
|
- type: ndcg_at_5 |
|
value: 34.419 |
|
- type: precision_at_1 |
|
value: 54.50000000000001 |
|
- type: precision_at_10 |
|
value: 24.825 |
|
- type: precision_at_100 |
|
value: 7.698 |
|
- type: precision_at_1000 |
|
value: 1.657 |
|
- type: precision_at_3 |
|
value: 38.917 |
|
- type: precision_at_5 |
|
value: 32.35 |
|
- type: recall_at_1 |
|
value: 7.481 |
|
- type: recall_at_10 |
|
value: 20.341 |
|
- type: recall_at_100 |
|
value: 41.778 |
|
- type: recall_at_1000 |
|
value: 64.82 |
|
- type: recall_at_3 |
|
value: 12.748000000000001 |
|
- type: recall_at_5 |
|
value: 15.507000000000001 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/emotion |
|
name: MTEB EmotionClassification |
|
config: default |
|
split: test |
|
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 |
|
metrics: |
|
- type: accuracy |
|
value: 46.580000000000005 |
|
- type: f1 |
|
value: 41.5149462395095 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fever |
|
name: MTEB FEVER |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 61.683 |
|
- type: map_at_10 |
|
value: 73.071 |
|
- type: map_at_100 |
|
value: 73.327 |
|
- type: map_at_1000 |
|
value: 73.341 |
|
- type: map_at_3 |
|
value: 71.446 |
|
- type: map_at_5 |
|
value: 72.557 |
|
- type: mrr_at_1 |
|
value: 66.44200000000001 |
|
- type: mrr_at_10 |
|
value: 77.725 |
|
- type: mrr_at_100 |
|
value: 77.89399999999999 |
|
- type: mrr_at_1000 |
|
value: 77.898 |
|
- type: mrr_at_3 |
|
value: 76.283 |
|
- type: mrr_at_5 |
|
value: 77.29700000000001 |
|
- type: ndcg_at_1 |
|
value: 66.44200000000001 |
|
- type: ndcg_at_10 |
|
value: 78.43 |
|
- type: ndcg_at_100 |
|
value: 79.462 |
|
- type: ndcg_at_1000 |
|
value: 79.754 |
|
- type: ndcg_at_3 |
|
value: 75.53800000000001 |
|
- type: ndcg_at_5 |
|
value: 77.332 |
|
- type: precision_at_1 |
|
value: 66.44200000000001 |
|
- type: precision_at_10 |
|
value: 9.878 |
|
- type: precision_at_100 |
|
value: 1.051 |
|
- type: precision_at_1000 |
|
value: 0.109 |
|
- type: precision_at_3 |
|
value: 29.878 |
|
- type: precision_at_5 |
|
value: 18.953 |
|
- type: recall_at_1 |
|
value: 61.683 |
|
- type: recall_at_10 |
|
value: 90.259 |
|
- type: recall_at_100 |
|
value: 94.633 |
|
- type: recall_at_1000 |
|
value: 96.60499999999999 |
|
- type: recall_at_3 |
|
value: 82.502 |
|
- type: recall_at_5 |
|
value: 86.978 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fiqa |
|
name: MTEB FiQA2018 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 17.724 |
|
- type: map_at_10 |
|
value: 29.487999999999996 |
|
- type: map_at_100 |
|
value: 31.243 |
|
- type: map_at_1000 |
|
value: 31.419999999999998 |
|
- type: map_at_3 |
|
value: 25.612000000000002 |
|
- type: map_at_5 |
|
value: 27.859 |
|
- type: mrr_at_1 |
|
value: 35.802 |
|
- type: mrr_at_10 |
|
value: 44.684000000000005 |
|
- type: mrr_at_100 |
|
value: 45.578 |
|
- type: mrr_at_1000 |
|
value: 45.621 |
|
- type: mrr_at_3 |
|
value: 42.361 |
|
- type: mrr_at_5 |
|
value: 43.85 |
|
- type: ndcg_at_1 |
|
value: 35.802 |
|
- type: ndcg_at_10 |
|
value: 37.009 |
|
- type: ndcg_at_100 |
|
value: 43.903 |
|
- type: ndcg_at_1000 |
|
value: 47.019 |
|
- type: ndcg_at_3 |
|
value: 33.634 |
|
- type: ndcg_at_5 |
|
value: 34.965 |
|
- type: precision_at_1 |
|
value: 35.802 |
|
- type: precision_at_10 |
|
value: 10.386 |
|
- type: precision_at_100 |
|
value: 1.7309999999999999 |
|
- type: precision_at_1000 |
|
value: 0.231 |
|
- type: precision_at_3 |
|
value: 22.84 |
|
- type: precision_at_5 |
|
value: 17.037 |
|
- type: recall_at_1 |
|
value: 17.724 |
|
- type: recall_at_10 |
|
value: 43.708000000000006 |
|
- type: recall_at_100 |
|
value: 69.902 |
|
- type: recall_at_1000 |
|
value: 88.51 |
|
- type: recall_at_3 |
|
value: 30.740000000000002 |
|
- type: recall_at_5 |
|
value: 36.742000000000004 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: jinaai/flores_clustering |
|
name: MTEB FloresClusteringS2S |
|
config: default |
|
split: test |
|
revision: 480b580487f53a46f881354a8348335d4edbb2de |
|
metrics: |
|
- type: v_measure |
|
value: 39.79120149869612 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: hotpotqa |
|
name: MTEB HotpotQA |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 34.801 |
|
- type: map_at_10 |
|
value: 50.42100000000001 |
|
- type: map_at_100 |
|
value: 51.254 |
|
- type: map_at_1000 |
|
value: 51.327999999999996 |
|
- type: map_at_3 |
|
value: 47.56 |
|
- type: map_at_5 |
|
value: 49.379 |
|
- type: mrr_at_1 |
|
value: 69.602 |
|
- type: mrr_at_10 |
|
value: 76.385 |
|
- type: mrr_at_100 |
|
value: 76.668 |
|
- type: mrr_at_1000 |
|
value: 76.683 |
|
- type: mrr_at_3 |
|
value: 75.102 |
|
- type: mrr_at_5 |
|
value: 75.949 |
|
- type: ndcg_at_1 |
|
value: 69.602 |
|
- type: ndcg_at_10 |
|
value: 59.476 |
|
- type: ndcg_at_100 |
|
value: 62.527 |
|
- type: ndcg_at_1000 |
|
value: 64.043 |
|
- type: ndcg_at_3 |
|
value: 55.155 |
|
- type: ndcg_at_5 |
|
value: 57.623000000000005 |
|
- type: precision_at_1 |
|
value: 69.602 |
|
- type: precision_at_10 |
|
value: 12.292 |
|
- type: precision_at_100 |
|
value: 1.467 |
|
- type: precision_at_1000 |
|
value: 0.167 |
|
- type: precision_at_3 |
|
value: 34.634 |
|
- type: precision_at_5 |
|
value: 22.728 |
|
- type: recall_at_1 |
|
value: 34.801 |
|
- type: recall_at_10 |
|
value: 61.458 |
|
- type: recall_at_100 |
|
value: 73.363 |
|
- type: recall_at_1000 |
|
value: 83.43 |
|
- type: recall_at_3 |
|
value: 51.951 |
|
- type: recall_at_5 |
|
value: 56.82000000000001 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/imdb |
|
name: MTEB ImdbClassification |
|
config: default |
|
split: test |
|
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 |
|
metrics: |
|
- type: accuracy |
|
value: 67.46079999999999 |
|
- type: ap |
|
value: 61.81278199159353 |
|
- type: f1 |
|
value: 67.26505019954826 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: jinaai/miracl |
|
name: MTEB MIRACL |
|
config: default |
|
split: test |
|
revision: d28a029f35c4ff7f616df47b0edf54e6882395e6 |
|
metrics: |
|
- type: map |
|
value: 73.90464144118539 |
|
- type: mrr |
|
value: 82.44674693216022 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: jinaai/miracl |
|
name: MTEB MIRACLRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 21.299 |
|
- type: map_at_10 |
|
value: 70.547 |
|
- type: map_at_100 |
|
value: 72.394 |
|
- type: map_at_1000 |
|
value: 72.39999999999999 |
|
- type: map_at_3 |
|
value: 41.317 |
|
- type: map_at_5 |
|
value: 53.756 |
|
- type: mrr_at_1 |
|
value: 72.84 |
|
- type: mrr_at_10 |
|
value: 82.466 |
|
- type: mrr_at_100 |
|
value: 82.52199999999999 |
|
- type: mrr_at_1000 |
|
value: 82.52199999999999 |
|
- type: mrr_at_3 |
|
value: 80.607 |
|
- type: mrr_at_5 |
|
value: 82.065 |
|
- type: ndcg_at_1 |
|
value: 72.994 |
|
- type: ndcg_at_10 |
|
value: 80.89 |
|
- type: ndcg_at_100 |
|
value: 83.30199999999999 |
|
- type: ndcg_at_1000 |
|
value: 83.337 |
|
- type: ndcg_at_3 |
|
value: 70.357 |
|
- type: ndcg_at_5 |
|
value: 72.529 |
|
- type: precision_at_1 |
|
value: 72.994 |
|
- type: precision_at_10 |
|
value: 43.056 |
|
- type: precision_at_100 |
|
value: 4.603 |
|
- type: precision_at_1000 |
|
value: 0.461 |
|
- type: precision_at_3 |
|
value: 61.626000000000005 |
|
- type: precision_at_5 |
|
value: 55.525000000000006 |
|
- type: recall_at_1 |
|
value: 21.299 |
|
- type: recall_at_10 |
|
value: 93.903 |
|
- type: recall_at_100 |
|
value: 99.86699999999999 |
|
- type: recall_at_1000 |
|
value: 100.0 |
|
- type: recall_at_3 |
|
value: 46.653 |
|
- type: recall_at_5 |
|
value: 65.72200000000001 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (en) |
|
config: en |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 90.37163702690378 |
|
- type: f1 |
|
value: 90.18615216514222 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (es) |
|
config: es |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 89.88992661774515 |
|
- type: f1 |
|
value: 89.3738963046966 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 71.97218422252622 |
|
- type: f1 |
|
value: 54.03096570916335 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (es) |
|
config: es |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 68.75917278185457 |
|
- type: f1 |
|
value: 49.144083814705844 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 70.75991930060525 |
|
- type: f1 |
|
value: 69.37993796176502 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (es) |
|
config: es |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 66.93006052454606 |
|
- type: f1 |
|
value: 66.04029135274683 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (en) |
|
config: en |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 73.81977135171486 |
|
- type: f1 |
|
value: 74.10477122507747 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (es) |
|
config: es |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 71.23402824478816 |
|
- type: f1 |
|
value: 71.75572665880296 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-p2p |
|
name: MTEB MedrxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 |
|
metrics: |
|
- type: v_measure |
|
value: 32.189750849969215 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-s2s |
|
name: MTEB MedrxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 |
|
metrics: |
|
- type: v_measure |
|
value: 28.78357393555938 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/mind_small |
|
name: MTEB MindSmallReranking |
|
config: default |
|
split: test |
|
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 |
|
metrics: |
|
- type: map |
|
value: 30.605612998328358 |
|
- type: mrr |
|
value: 31.595529205695833 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: jinaai/mintakaqa |
|
name: MTEB MintakaESRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 16.213 |
|
- type: map_at_10 |
|
value: 24.079 |
|
- type: map_at_100 |
|
value: 25.039 |
|
- type: map_at_1000 |
|
value: 25.142999999999997 |
|
- type: map_at_3 |
|
value: 21.823 |
|
- type: map_at_5 |
|
value: 23.069 |
|
- type: mrr_at_1 |
|
value: 16.213 |
|
- type: mrr_at_10 |
|
value: 24.079 |
|
- type: mrr_at_100 |
|
value: 25.039 |
|
- type: mrr_at_1000 |
|
value: 25.142999999999997 |
|
- type: mrr_at_3 |
|
value: 21.823 |
|
- type: mrr_at_5 |
|
value: 23.069 |
|
- type: ndcg_at_1 |
|
value: 16.213 |
|
- type: ndcg_at_10 |
|
value: 28.315 |
|
- type: ndcg_at_100 |
|
value: 33.475 |
|
- type: ndcg_at_1000 |
|
value: 36.838 |
|
- type: ndcg_at_3 |
|
value: 23.627000000000002 |
|
- type: ndcg_at_5 |
|
value: 25.879 |
|
- type: precision_at_1 |
|
value: 16.213 |
|
- type: precision_at_10 |
|
value: 4.183 |
|
- type: precision_at_100 |
|
value: 0.6709999999999999 |
|
- type: precision_at_1000 |
|
value: 0.095 |
|
- type: precision_at_3 |
|
value: 9.612 |
|
- type: precision_at_5 |
|
value: 6.865 |
|
- type: recall_at_1 |
|
value: 16.213 |
|
- type: recall_at_10 |
|
value: 41.832 |
|
- type: recall_at_100 |
|
value: 67.12 |
|
- type: recall_at_1000 |
|
value: 94.843 |
|
- type: recall_at_3 |
|
value: 28.837000000000003 |
|
- type: recall_at_5 |
|
value: 34.323 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nfcorpus |
|
name: MTEB NFCorpus |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 4.692 |
|
- type: map_at_10 |
|
value: 10.783 |
|
- type: map_at_100 |
|
value: 13.447999999999999 |
|
- type: map_at_1000 |
|
value: 14.756 |
|
- type: map_at_3 |
|
value: 7.646 |
|
- type: map_at_5 |
|
value: 9.311 |
|
- type: mrr_at_1 |
|
value: 42.415000000000006 |
|
- type: mrr_at_10 |
|
value: 50.471 |
|
- type: mrr_at_100 |
|
value: 51.251999999999995 |
|
- type: mrr_at_1000 |
|
value: 51.292 |
|
- type: mrr_at_3 |
|
value: 48.4 |
|
- type: mrr_at_5 |
|
value: 49.809 |
|
- type: ndcg_at_1 |
|
value: 40.867 |
|
- type: ndcg_at_10 |
|
value: 30.303 |
|
- type: ndcg_at_100 |
|
value: 27.915 |
|
- type: ndcg_at_1000 |
|
value: 36.734 |
|
- type: ndcg_at_3 |
|
value: 35.74 |
|
- type: ndcg_at_5 |
|
value: 33.938 |
|
- type: precision_at_1 |
|
value: 42.415000000000006 |
|
- type: precision_at_10 |
|
value: 22.105 |
|
- type: precision_at_100 |
|
value: 7.173 |
|
- type: precision_at_1000 |
|
value: 2.007 |
|
- type: precision_at_3 |
|
value: 33.437 |
|
- type: precision_at_5 |
|
value: 29.349999999999998 |
|
- type: recall_at_1 |
|
value: 4.692 |
|
- type: recall_at_10 |
|
value: 14.798 |
|
- type: recall_at_100 |
|
value: 28.948 |
|
- type: recall_at_1000 |
|
value: 59.939 |
|
- type: recall_at_3 |
|
value: 8.562 |
|
- type: recall_at_5 |
|
value: 11.818 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nq |
|
name: MTEB NQ |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 27.572999999999997 |
|
- type: map_at_10 |
|
value: 42.754 |
|
- type: map_at_100 |
|
value: 43.8 |
|
- type: map_at_1000 |
|
value: 43.838 |
|
- type: map_at_3 |
|
value: 38.157000000000004 |
|
- type: map_at_5 |
|
value: 40.9 |
|
- type: mrr_at_1 |
|
value: 31.373 |
|
- type: mrr_at_10 |
|
value: 45.321 |
|
- type: mrr_at_100 |
|
value: 46.109 |
|
- type: mrr_at_1000 |
|
value: 46.135 |
|
- type: mrr_at_3 |
|
value: 41.483 |
|
- type: mrr_at_5 |
|
value: 43.76 |
|
- type: ndcg_at_1 |
|
value: 31.373 |
|
- type: ndcg_at_10 |
|
value: 50.7 |
|
- type: ndcg_at_100 |
|
value: 55.103 |
|
- type: ndcg_at_1000 |
|
value: 55.955999999999996 |
|
- type: ndcg_at_3 |
|
value: 42.069 |
|
- type: ndcg_at_5 |
|
value: 46.595 |
|
- type: precision_at_1 |
|
value: 31.373 |
|
- type: precision_at_10 |
|
value: 8.601 |
|
- type: precision_at_100 |
|
value: 1.11 |
|
- type: precision_at_1000 |
|
value: 0.11900000000000001 |
|
- type: precision_at_3 |
|
value: 19.399 |
|
- type: precision_at_5 |
|
value: 14.224 |
|
- type: recall_at_1 |
|
value: 27.572999999999997 |
|
- type: recall_at_10 |
|
value: 72.465 |
|
- type: recall_at_100 |
|
value: 91.474 |
|
- type: recall_at_1000 |
|
value: 97.78099999999999 |
|
- type: recall_at_3 |
|
value: 50.087 |
|
- type: recall_at_5 |
|
value: 60.516000000000005 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: quora |
|
name: MTEB QuoraRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 70.525 |
|
- type: map_at_10 |
|
value: 84.417 |
|
- type: map_at_100 |
|
value: 85.07000000000001 |
|
- type: map_at_1000 |
|
value: 85.085 |
|
- type: map_at_3 |
|
value: 81.45 |
|
- type: map_at_5 |
|
value: 83.317 |
|
- type: mrr_at_1 |
|
value: 81.17999999999999 |
|
- type: mrr_at_10 |
|
value: 87.34100000000001 |
|
- type: mrr_at_100 |
|
value: 87.461 |
|
- type: mrr_at_1000 |
|
value: 87.46199999999999 |
|
- type: mrr_at_3 |
|
value: 86.372 |
|
- type: mrr_at_5 |
|
value: 87.046 |
|
- type: ndcg_at_1 |
|
value: 81.17999999999999 |
|
- type: ndcg_at_10 |
|
value: 88.144 |
|
- type: ndcg_at_100 |
|
value: 89.424 |
|
- type: ndcg_at_1000 |
|
value: 89.517 |
|
- type: ndcg_at_3 |
|
value: 85.282 |
|
- type: ndcg_at_5 |
|
value: 86.874 |
|
- type: precision_at_1 |
|
value: 81.17999999999999 |
|
- type: precision_at_10 |
|
value: 13.385 |
|
- type: precision_at_100 |
|
value: 1.533 |
|
- type: precision_at_1000 |
|
value: 0.157 |
|
- type: precision_at_3 |
|
value: 37.29 |
|
- type: precision_at_5 |
|
value: 24.546 |
|
- type: recall_at_1 |
|
value: 70.525 |
|
- type: recall_at_10 |
|
value: 95.22500000000001 |
|
- type: recall_at_100 |
|
value: 99.572 |
|
- type: recall_at_1000 |
|
value: 99.98899999999999 |
|
- type: recall_at_3 |
|
value: 87.035 |
|
- type: recall_at_5 |
|
value: 91.526 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering |
|
name: MTEB RedditClustering |
|
config: default |
|
split: test |
|
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb |
|
metrics: |
|
- type: v_measure |
|
value: 48.284384328108736 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering-p2p |
|
name: MTEB RedditClusteringP2P |
|
config: default |
|
split: test |
|
revision: 282350215ef01743dc01b456c7f5241fa8937f16 |
|
metrics: |
|
- type: v_measure |
|
value: 56.02508021518392 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scidocs |
|
name: MTEB SCIDOCS |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 4.023000000000001 |
|
- type: map_at_10 |
|
value: 10.046 |
|
- type: map_at_100 |
|
value: 11.802999999999999 |
|
- type: map_at_1000 |
|
value: 12.074 |
|
- type: map_at_3 |
|
value: 7.071 |
|
- type: map_at_5 |
|
value: 8.556 |
|
- type: mrr_at_1 |
|
value: 19.8 |
|
- type: mrr_at_10 |
|
value: 30.105999999999998 |
|
- type: mrr_at_100 |
|
value: 31.16 |
|
- type: mrr_at_1000 |
|
value: 31.224 |
|
- type: mrr_at_3 |
|
value: 26.633000000000003 |
|
- type: mrr_at_5 |
|
value: 28.768 |
|
- type: ndcg_at_1 |
|
value: 19.8 |
|
- type: ndcg_at_10 |
|
value: 17.358 |
|
- type: ndcg_at_100 |
|
value: 24.566 |
|
- type: ndcg_at_1000 |
|
value: 29.653000000000002 |
|
- type: ndcg_at_3 |
|
value: 16.052 |
|
- type: ndcg_at_5 |
|
value: 14.325 |
|
- type: precision_at_1 |
|
value: 19.8 |
|
- type: precision_at_10 |
|
value: 9.07 |
|
- type: precision_at_100 |
|
value: 1.955 |
|
- type: precision_at_1000 |
|
value: 0.318 |
|
- type: precision_at_3 |
|
value: 14.933 |
|
- type: precision_at_5 |
|
value: 12.68 |
|
- type: recall_at_1 |
|
value: 4.023000000000001 |
|
- type: recall_at_10 |
|
value: 18.398 |
|
- type: recall_at_100 |
|
value: 39.683 |
|
- type: recall_at_1000 |
|
value: 64.625 |
|
- type: recall_at_3 |
|
value: 9.113 |
|
- type: recall_at_5 |
|
value: 12.873000000000001 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sickr-sts |
|
name: MTEB SICK-R |
|
config: default |
|
split: test |
|
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 87.90508618312852 |
|
- type: cos_sim_spearman |
|
value: 83.01323463129205 |
|
- type: euclidean_pearson |
|
value: 84.35845059002891 |
|
- type: euclidean_spearman |
|
value: 82.85508559018527 |
|
- type: manhattan_pearson |
|
value: 84.3682368950498 |
|
- type: manhattan_spearman |
|
value: 82.8619728517302 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts12-sts |
|
name: MTEB STS12 |
|
config: default |
|
split: test |
|
revision: a0d554a64d88156834ff5ae9920b964011b16384 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 89.28294535873366 |
|
- type: cos_sim_spearman |
|
value: 81.61879268131732 |
|
- type: euclidean_pearson |
|
value: 85.99053604863724 |
|
- type: euclidean_spearman |
|
value: 80.95176684739084 |
|
- type: manhattan_pearson |
|
value: 85.98054086663903 |
|
- type: manhattan_spearman |
|
value: 80.9911070430335 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts13-sts |
|
name: MTEB STS13 |
|
config: default |
|
split: test |
|
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 86.15898098455258 |
|
- type: cos_sim_spearman |
|
value: 86.8247985072307 |
|
- type: euclidean_pearson |
|
value: 86.25342429918649 |
|
- type: euclidean_spearman |
|
value: 87.13468603023252 |
|
- type: manhattan_pearson |
|
value: 86.2006134067688 |
|
- type: manhattan_spearman |
|
value: 87.06135811996896 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts14-sts |
|
name: MTEB STS14 |
|
config: default |
|
split: test |
|
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 85.57403998481877 |
|
- type: cos_sim_spearman |
|
value: 83.55947075172618 |
|
- type: euclidean_pearson |
|
value: 84.97097562965358 |
|
- type: euclidean_spearman |
|
value: 83.6287075601467 |
|
- type: manhattan_pearson |
|
value: 84.87092197104133 |
|
- type: manhattan_spearman |
|
value: 83.53783891641335 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts15-sts |
|
name: MTEB STS15 |
|
config: default |
|
split: test |
|
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 88.14632780204231 |
|
- type: cos_sim_spearman |
|
value: 88.74903634923868 |
|
- type: euclidean_pearson |
|
value: 88.03922995855112 |
|
- type: euclidean_spearman |
|
value: 88.72852190525855 |
|
- type: manhattan_pearson |
|
value: 87.9694791024271 |
|
- type: manhattan_spearman |
|
value: 88.66461452107418 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts16-sts |
|
name: MTEB STS16 |
|
config: default |
|
split: test |
|
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 84.75989818558652 |
|
- type: cos_sim_spearman |
|
value: 86.03107893122942 |
|
- type: euclidean_pearson |
|
value: 85.21908960133018 |
|
- type: euclidean_spearman |
|
value: 85.93012720153482 |
|
- type: manhattan_pearson |
|
value: 85.1969170195502 |
|
- type: manhattan_spearman |
|
value: 85.8975254197784 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-en) |
|
config: en-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 89.16803898789955 |
|
- type: cos_sim_spearman |
|
value: 88.56139047950525 |
|
- type: euclidean_pearson |
|
value: 88.09685325747859 |
|
- type: euclidean_spearman |
|
value: 88.0457609458947 |
|
- type: manhattan_pearson |
|
value: 88.07054413001431 |
|
- type: manhattan_spearman |
|
value: 88.10784098889314 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (es-en) |
|
config: es-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 86.7160384474547 |
|
- type: cos_sim_spearman |
|
value: 86.4899235500562 |
|
- type: euclidean_pearson |
|
value: 85.90854477703468 |
|
- type: euclidean_spearman |
|
value: 86.16085009124498 |
|
- type: manhattan_pearson |
|
value: 85.9249735317884 |
|
- type: manhattan_spearman |
|
value: 86.25038421339116 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (es-es) |
|
config: es-es |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 89.37914622360788 |
|
- type: cos_sim_spearman |
|
value: 88.24619159322809 |
|
- type: euclidean_pearson |
|
value: 89.00538382632769 |
|
- type: euclidean_spearman |
|
value: 88.44675863524736 |
|
- type: manhattan_pearson |
|
value: 88.97372120683606 |
|
- type: manhattan_spearman |
|
value: 88.33509324222129 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (en) |
|
config: en |
|
split: test |
|
revision: eea2b4fe26a775864c896887d910b76a8098ad3f |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 66.22181360203069 |
|
- type: cos_sim_spearman |
|
value: 65.6218291833768 |
|
- type: euclidean_pearson |
|
value: 67.14543788822508 |
|
- type: euclidean_spearman |
|
value: 65.21269939987857 |
|
- type: manhattan_pearson |
|
value: 67.03304607195636 |
|
- type: manhattan_spearman |
|
value: 65.18885316423805 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (es) |
|
config: es |
|
split: test |
|
revision: eea2b4fe26a775864c896887d910b76a8098ad3f |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 65.71694059677084 |
|
- type: cos_sim_spearman |
|
value: 67.96591844540954 |
|
- type: euclidean_pearson |
|
value: 65.6964079162296 |
|
- type: euclidean_spearman |
|
value: 67.53027948900173 |
|
- type: manhattan_pearson |
|
value: 65.93545097673741 |
|
- type: manhattan_spearman |
|
value: 67.7261811805062 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (es-en) |
|
config: es-en |
|
split: test |
|
revision: eea2b4fe26a775864c896887d910b76a8098ad3f |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 75.43544796375058 |
|
- type: cos_sim_spearman |
|
value: 78.80462701160789 |
|
- type: euclidean_pearson |
|
value: 76.19135575163138 |
|
- type: euclidean_spearman |
|
value: 78.4974732597096 |
|
- type: manhattan_pearson |
|
value: 76.3254742699264 |
|
- type: manhattan_spearman |
|
value: 78.51884307690416 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/stsbenchmark-sts |
|
name: MTEB STSBenchmark |
|
config: default |
|
split: test |
|
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 87.46805293607684 |
|
- type: cos_sim_spearman |
|
value: 87.83792784689113 |
|
- type: euclidean_pearson |
|
value: 87.3872143683234 |
|
- type: euclidean_spearman |
|
value: 87.61611384542778 |
|
- type: manhattan_pearson |
|
value: 87.38542672601992 |
|
- type: manhattan_spearman |
|
value: 87.61423971087297 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: PlanTL-GOB-ES/sts-es |
|
name: MTEB STSES |
|
config: default |
|
split: test |
|
revision: 0912bb6c9393c76d62a7c5ee81c4c817ff47c9f4 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 82.55286866116202 |
|
- type: cos_sim_spearman |
|
value: 80.22150503320272 |
|
- type: euclidean_pearson |
|
value: 83.27223445187087 |
|
- type: euclidean_spearman |
|
value: 80.59078590992925 |
|
- type: manhattan_pearson |
|
value: 83.23095887013197 |
|
- type: manhattan_spearman |
|
value: 80.87994285189795 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/scidocs-reranking |
|
name: MTEB SciDocsRR |
|
config: default |
|
split: test |
|
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab |
|
metrics: |
|
- type: map |
|
value: 79.29717302265792 |
|
- type: mrr |
|
value: 94.02156304117088 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scifact |
|
name: MTEB SciFact |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 49.9 |
|
- type: map_at_10 |
|
value: 58.626 |
|
- type: map_at_100 |
|
value: 59.519999999999996 |
|
- type: map_at_1000 |
|
value: 59.55200000000001 |
|
- type: map_at_3 |
|
value: 56.232000000000006 |
|
- type: map_at_5 |
|
value: 57.833 |
|
- type: mrr_at_1 |
|
value: 52.333 |
|
- type: mrr_at_10 |
|
value: 60.039 |
|
- type: mrr_at_100 |
|
value: 60.732 |
|
- type: mrr_at_1000 |
|
value: 60.75899999999999 |
|
- type: mrr_at_3 |
|
value: 58.278 |
|
- type: mrr_at_5 |
|
value: 59.428000000000004 |
|
- type: ndcg_at_1 |
|
value: 52.333 |
|
- type: ndcg_at_10 |
|
value: 62.67 |
|
- type: ndcg_at_100 |
|
value: 66.465 |
|
- type: ndcg_at_1000 |
|
value: 67.425 |
|
- type: ndcg_at_3 |
|
value: 58.711999999999996 |
|
- type: ndcg_at_5 |
|
value: 60.958999999999996 |
|
- type: precision_at_1 |
|
value: 52.333 |
|
- type: precision_at_10 |
|
value: 8.333 |
|
- type: precision_at_100 |
|
value: 1.027 |
|
- type: precision_at_1000 |
|
value: 0.11100000000000002 |
|
- type: precision_at_3 |
|
value: 22.778000000000002 |
|
- type: precision_at_5 |
|
value: 15.267 |
|
- type: recall_at_1 |
|
value: 49.9 |
|
- type: recall_at_10 |
|
value: 73.394 |
|
- type: recall_at_100 |
|
value: 90.43299999999999 |
|
- type: recall_at_1000 |
|
value: 98.167 |
|
- type: recall_at_3 |
|
value: 63.032999999999994 |
|
- type: recall_at_5 |
|
value: 68.444 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: jinaai/spanish_news_clustering |
|
name: MTEB SpanishNewsClusteringP2P |
|
config: default |
|
split: test |
|
revision: b5edc3d3d7c12c7b9f883e9da50f6732f3624142 |
|
metrics: |
|
- type: v_measure |
|
value: 48.30543557796266 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: jinaai/spanish_passage_retrieval |
|
name: MTEB SpanishPassageRetrievalS2P |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 14.443 |
|
- type: map_at_10 |
|
value: 28.736 |
|
- type: map_at_100 |
|
value: 34.514 |
|
- type: map_at_1000 |
|
value: 35.004000000000005 |
|
- type: map_at_3 |
|
value: 20.308 |
|
- type: map_at_5 |
|
value: 25.404 |
|
- type: mrr_at_1 |
|
value: 50.29900000000001 |
|
- type: mrr_at_10 |
|
value: 63.757 |
|
- type: mrr_at_100 |
|
value: 64.238 |
|
- type: mrr_at_1000 |
|
value: 64.24600000000001 |
|
- type: mrr_at_3 |
|
value: 59.480999999999995 |
|
- type: mrr_at_5 |
|
value: 62.924 |
|
- type: ndcg_at_1 |
|
value: 50.29900000000001 |
|
- type: ndcg_at_10 |
|
value: 42.126999999999995 |
|
- type: ndcg_at_100 |
|
value: 57.208000000000006 |
|
- type: ndcg_at_1000 |
|
value: 60.646 |
|
- type: ndcg_at_3 |
|
value: 38.722 |
|
- type: ndcg_at_5 |
|
value: 40.007999999999996 |
|
- type: precision_at_1 |
|
value: 50.29900000000001 |
|
- type: precision_at_10 |
|
value: 19.82 |
|
- type: precision_at_100 |
|
value: 4.82 |
|
- type: precision_at_1000 |
|
value: 0.5910000000000001 |
|
- type: precision_at_3 |
|
value: 31.537 |
|
- type: precision_at_5 |
|
value: 28.262999999999998 |
|
- type: recall_at_1 |
|
value: 14.443 |
|
- type: recall_at_10 |
|
value: 43.885999999999996 |
|
- type: recall_at_100 |
|
value: 85.231 |
|
- type: recall_at_1000 |
|
value: 99.07000000000001 |
|
- type: recall_at_3 |
|
value: 22.486 |
|
- type: recall_at_5 |
|
value: 33.035 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: jinaai/spanish_passage_retrieval |
|
name: MTEB SpanishPassageRetrievalS2S |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 15.578 |
|
- type: map_at_10 |
|
value: 52.214000000000006 |
|
- type: map_at_100 |
|
value: 64.791 |
|
- type: map_at_1000 |
|
value: 64.791 |
|
- type: map_at_3 |
|
value: 33.396 |
|
- type: map_at_5 |
|
value: 41.728 |
|
- type: mrr_at_1 |
|
value: 73.653 |
|
- type: mrr_at_10 |
|
value: 85.116 |
|
- type: mrr_at_100 |
|
value: 85.205 |
|
- type: mrr_at_1000 |
|
value: 85.205 |
|
- type: mrr_at_3 |
|
value: 84.631 |
|
- type: mrr_at_5 |
|
value: 85.05 |
|
- type: ndcg_at_1 |
|
value: 76.64699999999999 |
|
- type: ndcg_at_10 |
|
value: 70.38600000000001 |
|
- type: ndcg_at_100 |
|
value: 82.27600000000001 |
|
- type: ndcg_at_1000 |
|
value: 82.27600000000001 |
|
- type: ndcg_at_3 |
|
value: 70.422 |
|
- type: ndcg_at_5 |
|
value: 69.545 |
|
- type: precision_at_1 |
|
value: 76.64699999999999 |
|
- type: precision_at_10 |
|
value: 43.653 |
|
- type: precision_at_100 |
|
value: 7.718999999999999 |
|
- type: precision_at_1000 |
|
value: 0.772 |
|
- type: precision_at_3 |
|
value: 64.671 |
|
- type: precision_at_5 |
|
value: 56.766000000000005 |
|
- type: recall_at_1 |
|
value: 15.578 |
|
- type: recall_at_10 |
|
value: 67.459 |
|
- type: recall_at_100 |
|
value: 100.0 |
|
- type: recall_at_1000 |
|
value: 100.0 |
|
- type: recall_at_3 |
|
value: 36.922 |
|
- type: recall_at_5 |
|
value: 49.424 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/sprintduplicatequestions-pairclassification |
|
name: MTEB SprintDuplicateQuestions |
|
config: default |
|
split: test |
|
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 99.81683168316832 |
|
- type: cos_sim_ap |
|
value: 95.61502659412484 |
|
- type: cos_sim_f1 |
|
value: 90.6813627254509 |
|
- type: cos_sim_precision |
|
value: 90.86345381526104 |
|
- type: cos_sim_recall |
|
value: 90.5 |
|
- type: dot_accuracy |
|
value: 99.8039603960396 |
|
- type: dot_ap |
|
value: 95.36783483182609 |
|
- type: dot_f1 |
|
value: 89.90825688073394 |
|
- type: dot_precision |
|
value: 91.68399168399168 |
|
- type: dot_recall |
|
value: 88.2 |
|
- type: euclidean_accuracy |
|
value: 99.81188118811882 |
|
- type: euclidean_ap |
|
value: 95.51583052324564 |
|
- type: euclidean_f1 |
|
value: 90.46214355948868 |
|
- type: euclidean_precision |
|
value: 88.97485493230174 |
|
- type: euclidean_recall |
|
value: 92.0 |
|
- type: manhattan_accuracy |
|
value: 99.8079207920792 |
|
- type: manhattan_ap |
|
value: 95.44030644653718 |
|
- type: manhattan_f1 |
|
value: 90.37698412698413 |
|
- type: manhattan_precision |
|
value: 89.66535433070865 |
|
- type: manhattan_recall |
|
value: 91.10000000000001 |
|
- type: max_accuracy |
|
value: 99.81683168316832 |
|
- type: max_ap |
|
value: 95.61502659412484 |
|
- type: max_f1 |
|
value: 90.6813627254509 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering |
|
name: MTEB StackExchangeClustering |
|
config: default |
|
split: test |
|
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 |
|
metrics: |
|
- type: v_measure |
|
value: 55.39046705023096 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering-p2p |
|
name: MTEB StackExchangeClusteringP2P |
|
config: default |
|
split: test |
|
revision: 815ca46b2622cec33ccafc3735d572c266efdb44 |
|
metrics: |
|
- type: v_measure |
|
value: 33.57429225651293 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/stackoverflowdupquestions-reranking |
|
name: MTEB StackOverflowDupQuestions |
|
config: default |
|
split: test |
|
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 |
|
metrics: |
|
- type: map |
|
value: 50.17622570658746 |
|
- type: mrr |
|
value: 50.99844293778118 |
|
- task: |
|
type: Summarization |
|
dataset: |
|
type: mteb/summeval |
|
name: MTEB SummEval |
|
config: default |
|
split: test |
|
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 29.97416289382191 |
|
- type: cos_sim_spearman |
|
value: 29.871890597161432 |
|
- type: dot_pearson |
|
value: 28.768845892613644 |
|
- type: dot_spearman |
|
value: 28.872458999448686 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: trec-covid |
|
name: MTEB TRECCOVID |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.22599999999999998 |
|
- type: map_at_10 |
|
value: 1.646 |
|
- type: map_at_100 |
|
value: 9.491 |
|
- type: map_at_1000 |
|
value: 23.75 |
|
- type: map_at_3 |
|
value: 0.588 |
|
- type: map_at_5 |
|
value: 0.9129999999999999 |
|
- type: mrr_at_1 |
|
value: 84.0 |
|
- type: mrr_at_10 |
|
value: 89.889 |
|
- type: mrr_at_100 |
|
value: 89.889 |
|
- type: mrr_at_1000 |
|
value: 89.889 |
|
- type: mrr_at_3 |
|
value: 89.667 |
|
- type: mrr_at_5 |
|
value: 89.667 |
|
- type: ndcg_at_1 |
|
value: 75.0 |
|
- type: ndcg_at_10 |
|
value: 67.368 |
|
- type: ndcg_at_100 |
|
value: 52.834 |
|
- type: ndcg_at_1000 |
|
value: 49.144 |
|
- type: ndcg_at_3 |
|
value: 72.866 |
|
- type: ndcg_at_5 |
|
value: 70.16 |
|
- type: precision_at_1 |
|
value: 84.0 |
|
- type: precision_at_10 |
|
value: 71.8 |
|
- type: precision_at_100 |
|
value: 54.04 |
|
- type: precision_at_1000 |
|
value: 21.709999999999997 |
|
- type: precision_at_3 |
|
value: 77.333 |
|
- type: precision_at_5 |
|
value: 74.0 |
|
- type: recall_at_1 |
|
value: 0.22599999999999998 |
|
- type: recall_at_10 |
|
value: 1.9029999999999998 |
|
- type: recall_at_100 |
|
value: 13.012 |
|
- type: recall_at_1000 |
|
value: 46.105000000000004 |
|
- type: recall_at_3 |
|
value: 0.63 |
|
- type: recall_at_5 |
|
value: 1.0030000000000001 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: webis-touche2020 |
|
name: MTEB Touche2020 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 1.5 |
|
- type: map_at_10 |
|
value: 8.193999999999999 |
|
- type: map_at_100 |
|
value: 14.01 |
|
- type: map_at_1000 |
|
value: 15.570999999999998 |
|
- type: map_at_3 |
|
value: 4.361000000000001 |
|
- type: map_at_5 |
|
value: 5.9270000000000005 |
|
- type: mrr_at_1 |
|
value: 16.326999999999998 |
|
- type: mrr_at_10 |
|
value: 33.326 |
|
- type: mrr_at_100 |
|
value: 34.592 |
|
- type: mrr_at_1000 |
|
value: 34.592 |
|
- type: mrr_at_3 |
|
value: 29.252 |
|
- type: mrr_at_5 |
|
value: 30.680000000000003 |
|
- type: ndcg_at_1 |
|
value: 15.306000000000001 |
|
- type: ndcg_at_10 |
|
value: 19.819 |
|
- type: ndcg_at_100 |
|
value: 33.428000000000004 |
|
- type: ndcg_at_1000 |
|
value: 45.024 |
|
- type: ndcg_at_3 |
|
value: 19.667 |
|
- type: ndcg_at_5 |
|
value: 19.625 |
|
- type: precision_at_1 |
|
value: 16.326999999999998 |
|
- type: precision_at_10 |
|
value: 18.367 |
|
- type: precision_at_100 |
|
value: 7.367 |
|
- type: precision_at_1000 |
|
value: 1.496 |
|
- type: precision_at_3 |
|
value: 23.128999999999998 |
|
- type: precision_at_5 |
|
value: 21.633 |
|
- type: recall_at_1 |
|
value: 1.5 |
|
- type: recall_at_10 |
|
value: 14.362 |
|
- type: recall_at_100 |
|
value: 45.842 |
|
- type: recall_at_1000 |
|
value: 80.42 |
|
- type: recall_at_3 |
|
value: 5.99 |
|
- type: recall_at_5 |
|
value: 8.701 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/toxic_conversations_50k |
|
name: MTEB ToxicConversationsClassification |
|
config: default |
|
split: test |
|
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c |
|
metrics: |
|
- type: accuracy |
|
value: 70.04740000000001 |
|
- type: ap |
|
value: 13.58661943759992 |
|
- type: f1 |
|
value: 53.727487131754195 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/tweet_sentiment_extraction |
|
name: MTEB TweetSentimentExtractionClassification |
|
config: default |
|
split: test |
|
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a |
|
metrics: |
|
- type: accuracy |
|
value: 61.06395019807584 |
|
- type: f1 |
|
value: 61.36753664680866 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/twentynewsgroups-clustering |
|
name: MTEB TwentyNewsgroupsClustering |
|
config: default |
|
split: test |
|
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 |
|
metrics: |
|
- type: v_measure |
|
value: 40.19881263066229 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twittersemeval2015-pairclassification |
|
name: MTEB TwitterSemEval2015 |
|
config: default |
|
split: test |
|
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 85.19401561661799 |
|
- type: cos_sim_ap |
|
value: 71.62462506173092 |
|
- type: cos_sim_f1 |
|
value: 66.0641327225455 |
|
- type: cos_sim_precision |
|
value: 62.234662934453 |
|
- type: cos_sim_recall |
|
value: 70.3957783641161 |
|
- type: dot_accuracy |
|
value: 84.69333015437802 |
|
- type: dot_ap |
|
value: 69.83805526490895 |
|
- type: dot_f1 |
|
value: 64.85446235265817 |
|
- type: dot_precision |
|
value: 59.59328028293546 |
|
- type: dot_recall |
|
value: 71.13456464379946 |
|
- type: euclidean_accuracy |
|
value: 85.38475293556655 |
|
- type: euclidean_ap |
|
value: 72.05594596250286 |
|
- type: euclidean_f1 |
|
value: 66.53543307086615 |
|
- type: euclidean_precision |
|
value: 62.332872291378514 |
|
- type: euclidean_recall |
|
value: 71.34564643799473 |
|
- type: manhattan_accuracy |
|
value: 85.3907134767837 |
|
- type: manhattan_ap |
|
value: 72.04585410650152 |
|
- type: manhattan_f1 |
|
value: 66.57132642116554 |
|
- type: manhattan_precision |
|
value: 60.704194740273856 |
|
- type: manhattan_recall |
|
value: 73.6939313984169 |
|
- type: max_accuracy |
|
value: 85.3907134767837 |
|
- type: max_ap |
|
value: 72.05594596250286 |
|
- type: max_f1 |
|
value: 66.57132642116554 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twitterurlcorpus-pairclassification |
|
name: MTEB TwitterURLCorpus |
|
config: default |
|
split: test |
|
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 89.30414871735165 |
|
- type: cos_sim_ap |
|
value: 86.4398673359918 |
|
- type: cos_sim_f1 |
|
value: 78.9243598692186 |
|
- type: cos_sim_precision |
|
value: 75.47249350101876 |
|
- type: cos_sim_recall |
|
value: 82.7071142593163 |
|
- type: dot_accuracy |
|
value: 89.26145845461248 |
|
- type: dot_ap |
|
value: 86.32172118414802 |
|
- type: dot_f1 |
|
value: 78.8277467755645 |
|
- type: dot_precision |
|
value: 75.79418662497335 |
|
- type: dot_recall |
|
value: 82.11425931629196 |
|
- type: euclidean_accuracy |
|
value: 89.24205378973105 |
|
- type: euclidean_ap |
|
value: 86.23988673522649 |
|
- type: euclidean_f1 |
|
value: 78.67984857951413 |
|
- type: euclidean_precision |
|
value: 75.2689684269742 |
|
- type: euclidean_recall |
|
value: 82.41453649522637 |
|
- type: manhattan_accuracy |
|
value: 89.18189932859859 |
|
- type: manhattan_ap |
|
value: 86.21003833972824 |
|
- type: manhattan_f1 |
|
value: 78.70972564850115 |
|
- type: manhattan_precision |
|
value: 76.485544094145 |
|
- type: manhattan_recall |
|
value: 81.0671388974438 |
|
- type: max_accuracy |
|
value: 89.30414871735165 |
|
- type: max_ap |
|
value: 86.4398673359918 |
|
- type: max_f1 |
|
value: 78.9243598692186 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: jinaai/cities_wiki_clustering |
|
name: MTEB WikiCitiesClustering |
|
config: default |
|
split: test |
|
revision: ddc9ee9242fa65332597f70e967ecc38b9d734fa |
|
metrics: |
|
- type: v_measure |
|
value: 73.254610626148 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: jinaai/xmarket_ml |
|
name: MTEB XMarketES |
|
config: default |
|
split: test |
|
revision: 705db869e8107dfe6e34b832af90446e77d813e3 |
|
metrics: |
|
- type: map_at_1 |
|
value: 5.506 |
|
- type: map_at_10 |
|
value: 11.546 |
|
- type: map_at_100 |
|
value: 14.299999999999999 |
|
- type: map_at_1000 |
|
value: 15.146999999999998 |
|
- type: map_at_3 |
|
value: 8.748000000000001 |
|
- type: map_at_5 |
|
value: 10.036000000000001 |
|
- type: mrr_at_1 |
|
value: 17.902 |
|
- type: mrr_at_10 |
|
value: 25.698999999999998 |
|
- type: mrr_at_100 |
|
value: 26.634 |
|
- type: mrr_at_1000 |
|
value: 26.704 |
|
- type: mrr_at_3 |
|
value: 23.244999999999997 |
|
- type: mrr_at_5 |
|
value: 24.555 |
|
- type: ndcg_at_1 |
|
value: 17.902 |
|
- type: ndcg_at_10 |
|
value: 19.714000000000002 |
|
- type: ndcg_at_100 |
|
value: 25.363000000000003 |
|
- type: ndcg_at_1000 |
|
value: 30.903999999999996 |
|
- type: ndcg_at_3 |
|
value: 17.884 |
|
- type: ndcg_at_5 |
|
value: 18.462 |
|
- type: precision_at_1 |
|
value: 17.902 |
|
- type: precision_at_10 |
|
value: 10.467 |
|
- type: precision_at_100 |
|
value: 3.9699999999999998 |
|
- type: precision_at_1000 |
|
value: 1.1320000000000001 |
|
- type: precision_at_3 |
|
value: 14.387 |
|
- type: precision_at_5 |
|
value: 12.727 |
|
- type: recall_at_1 |
|
value: 5.506 |
|
- type: recall_at_10 |
|
value: 19.997999999999998 |
|
- type: recall_at_100 |
|
value: 42.947 |
|
- type: recall_at_1000 |
|
value: 67.333 |
|
- type: recall_at_3 |
|
value: 11.158 |
|
- type: recall_at_5 |
|
value: 14.577000000000002 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: jinaai/xpqa |
|
name: MTEB XPQAESRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 32.53 |
|
- type: map_at_10 |
|
value: 58.68600000000001 |
|
- type: map_at_100 |
|
value: 60.45399999999999 |
|
- type: map_at_1000 |
|
value: 60.51499999999999 |
|
- type: map_at_3 |
|
value: 50.356 |
|
- type: map_at_5 |
|
value: 55.98 |
|
- type: mrr_at_1 |
|
value: 61.791 |
|
- type: mrr_at_10 |
|
value: 68.952 |
|
- type: mrr_at_100 |
|
value: 69.524 |
|
- type: mrr_at_1000 |
|
value: 69.538 |
|
- type: mrr_at_3 |
|
value: 67.087 |
|
- type: mrr_at_5 |
|
value: 68.052 |
|
- type: ndcg_at_1 |
|
value: 61.791 |
|
- type: ndcg_at_10 |
|
value: 65.359 |
|
- type: ndcg_at_100 |
|
value: 70.95700000000001 |
|
- type: ndcg_at_1000 |
|
value: 71.881 |
|
- type: ndcg_at_3 |
|
value: 59.999 |
|
- type: ndcg_at_5 |
|
value: 61.316 |
|
- type: precision_at_1 |
|
value: 61.791 |
|
- type: precision_at_10 |
|
value: 18.184 |
|
- type: precision_at_100 |
|
value: 2.317 |
|
- type: precision_at_1000 |
|
value: 0.245 |
|
- type: precision_at_3 |
|
value: 42.203 |
|
- type: precision_at_5 |
|
value: 31.374999999999996 |
|
- type: recall_at_1 |
|
value: 32.53 |
|
- type: recall_at_10 |
|
value: 73.098 |
|
- type: recall_at_100 |
|
value: 94.029 |
|
- type: recall_at_1000 |
|
value: 99.842 |
|
- type: recall_at_3 |
|
value: 54.525 |
|
- type: recall_at_5 |
|
value: 63.796 |
|
--- |
|
<!-- TODO: add evaluation results here --> |
|
<br><br> |
|
|
|
<p align="center"> |
|
<img src="https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/603763514de52ff951d89793/AFoybzd5lpBQXEBrQHuTt.png?w=200&h=200&f=face" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px"> |
|
</p> |
|
|
|
|
|
<p align="center"> |
|
<b>The text embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b> |
|
</p> |
|
|
|
## Quick Start |
|
|
|
The easiest way to starting using `jina-embeddings-v2-base-es` is to use Jina AI's [Embedding API](https://jina.ai/embeddings/). |
|
|
|
|
|
## Intended Usage & Model Info |
|
|
|
`jina-embeddings-v2-base-es` is a Spanish/English bilingual text **embedding model** supporting **8192 sequence length**. |
|
It is based on a BERT architecture (JinaBERT) that supports the symmetric bidirectional variant of [ALiBi](https://arxiv.org/abs/2108.12409) to allow longer sequence length. |
|
We have designed it for high performance in mono-lingual & cross-lingual applications and trained it specifically to support mixed Spanish-English input without bias. |
|
Additionally, we provide the following embedding models: |
|
|
|
`jina-embeddings-v2-base-es` es un modelo (embedding) de texto bilingüe Inglés/Español que admite una longitud de secuencia de 8192. |
|
Se basa en la arquitectura BERT (JinaBERT) que incorpora la variante bi-direccional simétrica de [ALiBi](https://arxiv.org/abs/2108.12409) para permitir una mayor longitud de secuencia. |
|
Hemos diseñado este modelo para un alto rendimiento en aplicaciones monolingües y bilingües, y está entrenando específicamente para admitir entradas mixtas de español e inglés sin sesgo. |
|
Adicionalmente, proporcionamos los siguientes modelos (embeddings): |
|
|
|
- [`jina-embeddings-v2-small-en`](https://huggingface.co/jinaai/jina-embeddings-v2-small-en): 33 million parameters. |
|
- [`jina-embeddings-v2-base-en`](https://huggingface.co/jinaai/jina-embeddings-v2-base-en): 137 million parameters. |
|
- [`jina-embeddings-v2-base-zh`](https://huggingface.co/jinaai/jina-embeddings-v2-base-zh): Chinese-English Bilingual embeddings. |
|
- [`jina-embeddings-v2-base-de`](https://huggingface.co/jinaai/jina-embeddings-v2-base-de): German-English Bilingual embeddings. |
|
- [`jina-embeddings-v2-base-es`](): Spanish-English Bilingual embeddings **(you are here)**. |
|
|
|
## Data & Parameters |
|
|
|
The data and training details are described in this [technical report](https://arxiv.org/abs/2402.17016) |
|
|
|
## Usage |
|
|
|
**<details><summary>Please apply mean pooling when integrating the model.</summary>** |
|
<p> |
|
|
|
### Why mean pooling? |
|
|
|
`mean pooling` takes all token embeddings from model output and averaging them at sentence/paragraph level. |
|
It has been proved to be the most effective way to produce high-quality sentence embeddings. |
|
We offer an `encode` function to deal with this. |
|
|
|
However, if you would like to do it without using the default `encode` function: |
|
|
|
```python |
|
import torch |
|
import torch.nn.functional as F |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
sentences = ['How is the weather today?', 'What is the current weather like today?'] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embeddings-v2-base-es') |
|
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-es', trust_remote_code=True) |
|
|
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
embeddings = F.normalize(embeddings, p=2, dim=1) |
|
``` |
|
|
|
</p> |
|
</details> |
|
|
|
You can use Jina Embedding models directly from the `transformers` package: |
|
```python |
|
!pip install transformers |
|
from transformers import AutoModel |
|
from numpy.linalg import norm |
|
|
|
cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b)) |
|
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-es', trust_remote_code=True) # trust_remote_code is needed to use the encode method |
|
embeddings = model.encode(['How is the weather today?', '¿Qué tiempo hace hoy?']) |
|
print(cos_sim(embeddings[0], embeddings[1])) |
|
``` |
|
|
|
If you only want to handle shorter sequence, such as 2k, pass the `max_length` parameter to the `encode` function: |
|
|
|
```python |
|
embeddings = model.encode( |
|
['Very long ... document'], |
|
max_length=2048 |
|
) |
|
``` |
|
|
|
Or you can use the model with the `sentence-transformers` package: |
|
```python |
|
from sentence_transformers import SentenceTransformer, util |
|
|
|
model = SentenceTransformer("jinaai/jina-embeddings-v2-base-es", trust_remote_code=True) |
|
embeddings = model.encode(['How is the weather today?', '¿Qué tiempo hace hoy?']) |
|
print(util.cos_sim(embeddings[0], embeddings[1])) |
|
``` |
|
|
|
And if you only want to handle shorter sequence, such as 2k, then you can set the `model.max_seq_length` |
|
|
|
```python |
|
model.max_seq_length = 2048 |
|
``` |
|
|
|
## Alternatives to Transformers and Sentence Transformers |
|
|
|
1. _Managed SaaS_: Get started with a free key on Jina AI's [Embedding API](https://jina.ai/embeddings/). |
|
2. _Private and high-performance deployment_: Get started by picking from our suite of models and deploy them on [AWS Sagemaker](https://aws.amazon.com/marketplace/seller-profile?id=seller-stch2ludm6vgy). |
|
|
|
## Use Jina Embeddings for RAG |
|
|
|
According to the latest blog post from [LLamaIndex](https://blog.llamaindex.ai/boosting-rag-picking-the-best-embedding-reranker-models-42d079022e83), |
|
|
|
> In summary, to achieve the peak performance in both hit rate and MRR, the combination of OpenAI or JinaAI-Base embeddings with the CohereRerank/bge-reranker-large reranker stands out. |
|
|
|
<img src="https://miro.medium.com/v2/resize:fit:4800/format:webp/1*ZP2RVejCZovF3FDCg-Bx3A.png" width="780px"> |
|
|
|
|
|
## Plans |
|
|
|
1. Bilingual embedding models supporting more European & Asian languages, including French, Italian and Japanese. |
|
2. Multimodal embedding models enable Multimodal RAG applications. |
|
3. High-performt rerankers. |
|
|
|
## Contact |
|
|
|
Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas. |
|
|
|
## Citation |
|
|
|
If you find Jina Embeddings useful in your research, please cite the following paper: |
|
|
|
``` |
|
@article{mohr2024multi, |
|
title={Multi-Task Contrastive Learning for 8192-Token Bilingual Text Embeddings}, |
|
author={Mohr, Isabelle and Krimmel, Markus and Sturua, Saba and Akram, Mohammad Kalim and Koukounas, Andreas and G{\"u}nther, Michael and Mastrapas, Georgios and Ravishankar, Vinit and Mart{\'\i}nez, Joan Fontanals and Wang, Feng and others}, |
|
journal={arXiv preprint arXiv:2402.17016}, |
|
year={2024} |
|
} |
|
``` |
|
|