File size: 12,397 Bytes
5ed05aa c380b5a 5ed05aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import math
import os
from functools import partial
from typing import Iterator, Optional, Tuple, Union
import torch
import torch.nn.utils.parametrize as parametrize
from torch import nn
from torch.nn import Parameter
from transformers import PretrainedConfig
from .modeling_xlm_roberta import XLMRobertaModel, XLMRobertaPreTrainedModel, XLMRobertaFlashConfig
def initialized_weights(
shape: Tuple[int], num_adaptions: int, init: str = "kaiming"
) -> torch.Tensor:
weight_data = []
for _ in range(num_adaptions):
new_adaption = torch.zeros(shape)
if init == "kaiming":
nn.init.kaiming_uniform_(new_adaption, a=math.sqrt(5))
elif init == "normal":
nn.init.normal_(new_adaption)
else:
raise NotImplementedError
weight_data.append(new_adaption)
return torch.stack(weight_data, dim=0)
class LoRAParametrization(nn.Module):
"""
This LoRA implementation was inspired by https://github.com/cccntu/minLoRA
The MIT License (MIT) Copyright (c) 2020 Andrej Karpathy
Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
def __init__(
self,
fan_in: int,
fan_out: int,
layer_type: str = "linear",
num_adaptions: int = 1,
rank: int = 4,
lora_dropout_p: float = 0.0,
lora_alpha: float = 1,
):
super().__init__()
# if weight is stored as (fan_out, fan_in), the memory layout of A & B follows (W + BA)x
# otherwise, it's x(W + AB). This allows us to tie the weights between linear layers and embeddings
fan_in_fan_out = layer_type == "embedding"
self.swap = (lambda x: (x[1], x[0])) if fan_in_fan_out else (lambda x: x)
# For the officially "correct" LoRA initialization, check here: https://github.com/microsoft/LoRA
# TODO: Ensure that the initialization here is correct
if layer_type == "linear":
self.lora_A = nn.Parameter(
initialized_weights((rank, fan_in), num_adaptions, init="kaiming")
)
self.lora_B = nn.Parameter(torch.zeros((num_adaptions, fan_out, rank)))
elif layer_type == "embedding":
self.lora_A = nn.Parameter(torch.zeros((num_adaptions, fan_in, rank)))
self.lora_B = nn.Parameter(
initialized_weights(
(rank, fan_out), num_adaptions=num_adaptions, init="normal"
)
)
else:
raise NotImplementedError
self.lora_alpha, self.rank = lora_alpha, rank
self.scaling = lora_alpha / rank
self.lora_dropout = (
nn.Dropout(p=lora_dropout_p) if lora_dropout_p > 0 else lambda x: x
)
self.dropout_fn = self._dropout if lora_dropout_p > 0 else lambda x: x
self.register_buffer(
"lora_dropout_mask",
torch.ones(self.swap((1, fan_in)), dtype=self.lora_A.dtype),
persistent=False,
)
self.forward_fn = lambda x: x
self.current_task = None
def _dropout(self, A):
# to mimic the original implementation: A @ dropout(x), we do (A * dropout(ones)) @ x
return A * self.lora_dropout(self.lora_dropout_mask)
def lora_forward(self, X):
assert self.current_task is not None
return (
X
+ torch.matmul(
*self.swap(
(
self.lora_B[self.current_task],
self.dropout_fn(self.lora_A[self.current_task]),
)
)
).view(X.shape)
* self.scaling
)
def forward(self, X):
return self.forward_fn(X)
@property
def current_task(self):
return self._current_task
@current_task.setter
def current_task(self, task: Union[None, int]):
self._current_task = task
if task is None:
self.forward_fn = lambda x: x
else:
self.forward_fn = self.lora_forward
@classmethod
def from_linear(
cls,
layer: nn.Module,
num_adaptions: int = 1,
rank: int = 4,
lora_dropout_p: float = 0.0,
lora_alpha: int = 1,
):
assert isinstance(layer, nn.Linear)
fan_out, fan_in = layer.weight.shape
return cls(
fan_in,
fan_out,
num_adaptions=num_adaptions,
layer_type="linear",
rank=rank,
lora_dropout_p=lora_dropout_p,
lora_alpha=lora_alpha,
)
@classmethod
def from_embedding(
cls, layer, num_adaptions=1, rank=4, lora_dropout_p=0.0, lora_alpha=1
):
assert isinstance(layer, nn.Embedding)
fan_in, fan_out = layer.weight.shape
return cls(
fan_in,
fan_out,
num_adaptions=num_adaptions,
layer_type="embedding",
rank=rank,
lora_dropout_p=lora_dropout_p,
lora_alpha=lora_alpha,
)
@classmethod
def add_to_layer(
cls, layer, num_adaptions=1, rank=4, lora_dropout_p=0.0, lora_alpha=1
):
if isinstance(layer, nn.Linear):
parametrize.register_parametrization(
layer,
"weight",
cls.from_linear(
layer,
num_adaptions=num_adaptions,
rank=rank,
lora_dropout_p=lora_dropout_p,
lora_alpha=lora_alpha,
),
)
elif isinstance(layer, nn.Embedding):
parametrize.register_parametrization(
layer,
"weight",
cls.from_embedding(
layer,
num_adaptions=num_adaptions,
rank=rank,
lora_dropout_p=lora_dropout_p,
lora_alpha=lora_alpha,
),
)
@staticmethod
def select_task_for_layer(layer: nn.Module, task_idx: Optional[int] = None):
if isinstance(layer, LoRAParametrization):
layer.current_task = task_idx
@staticmethod
def merge_lora_into_layer(layer: nn.Module):
if hasattr(layer, "parametrizations"):
for attr_name in layer.parametrizations.keys():
parametrize.remove_parametrizations(layer, attr_name, leave_parametrized=True)
class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
def __init__(self, config: XLMRobertaFlashConfig, roberta: Optional[XLMRobertaModel] = None, add_pooling_layer=True):
super().__init__(config)
if roberta is None:
self.roberta = XLMRobertaModel(config, add_pooling_layer=add_pooling_layer)
else:
self.roberta = roberta
self._is_merged = False
self._num_adaptions = config.num_loras
self._register_lora(self._num_adaptions)
self.main_params_trainable = False
self._task_idx = None
# By default, we select the first LoRA
self.current_task = 0
@property
def main_params_trainable(self):
return self._main_params_trainable
@main_params_trainable.setter
def main_params_trainable(self, val: bool):
"""Whether the main parameters (i.e. those that are not LoRA) should be trainable.
This method sets the `requires_grad_` attribute of the main weights
and controls which parameters are returned in `self.parameters()`.
:param val: Whether or not to make the parameters trainable.
:return: None
"""
self._main_params_trainable = val
for name, param in super().named_parameters():
if "lora" not in name:
param.requires_grad_(val)
@classmethod
def from_roberta(cls, *args, **kwargs):
roberta = XLMRobertaModel.from_pretrained(*args, **kwargs)
config = XLMRobertaFlashConfig.from_pretrained(*args, **kwargs)
return cls(config, roberta=roberta)
def merge_lora(self):
"""Merges currently selected LoRA into main weights."""
if self._is_merged:
raise Exception('LoRA has already been merged, cannot merge again')
self._is_merged = True
self.apply(LoRAParametrization.merge_lora_into_layer)
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
*model_args,
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
cache_dir: Optional[Union[str, os.PathLike]] = None,
ignore_mismatched_sizes: bool = False,
force_download: bool = False,
local_files_only: bool = False,
token: Optional[Union[str, bool]] = None,
revision: str = "main",
use_safetensors: bool = None,
**kwargs,
):
"""
TODO: choose between from_roberta and super().from_pretrained
We want to be able to load both a pretrained XLMRoBertaModel, and a trained
XLMRobertaLoRA via this method. To this end, we need to check which of these
models we are expected to load.
"""
return cls.from_roberta(pretrained_model_name_or_path)
def _register_lora(self, num_adaptions=1, rank=4, lora_dropout_p=0.0, lora_alpha=1):
self.apply(
partial(
LoRAParametrization.add_to_layer,
num_adaptions=num_adaptions,
rank=rank,
lora_dropout_p=lora_dropout_p,
lora_alpha=lora_alpha,
)
)
@property
def current_task(self):
""" Which LoRA is currently selected
:return: Integer or None (when LoRA is disabled)
"""
return self._task_idx
@current_task.setter
def current_task(self, task_idx: Union[None, int]):
"""Set the LoRA that is to be used.
The LoRA is specified by `task_idx`, which may be an integer >= 0,
indexing the available LoRAs. If it is None, no LoRA is used.
:param task_idx: Which LoRA to use
:return:
"""
if self._is_merged:
raise Exception('LoRA has been merged, cannot select new task')
assert task_idx is None or 0 <= task_idx < self._num_adaptions
if self._task_idx != task_idx:
# In this case, we need to update the LoRAs everywhere
self._task_idx = task_idx
self.apply(
partial(LoRAParametrization.select_task_for_layer, task_idx=task_idx)
)
def forward(self, *args, current_task: Union[None, int] = -1, **kwargs):
if current_task is None or current_task >= 0:
self.current_task = current_task
return self.roberta(*args, **kwargs)
def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
for _, param in self.named_parameters(recurse=recurse):
yield param
def named_parameters(
self, prefix: str = "", recurse: bool = True, remove_duplicate: bool = True
) -> Iterator[Tuple[str, Parameter]]:
for name, param in super().named_parameters(
prefix=prefix, recurse=recurse, remove_duplicate=remove_duplicate
):
if "lora" in name or self.main_params_trainable:
yield name, param
|