jupyterjazz's picture
refactor: disable lora by default
5418705
raw
history blame
11.4 kB
import math
import os
from functools import partial
from typing import Iterator, Optional, Tuple, Union
import torch
import torch.nn.utils.parametrize as parametrize
from torch import nn
from torch.nn import Parameter
from transformers import PretrainedConfig
from .modeling_xlm_roberta import (
XLMRobertaFlashConfig,
XLMRobertaModel,
)
def initialized_weights(
shape: Tuple[int], num_adaptations: int, init: str = "kaiming"
) -> torch.Tensor:
weight_data = []
for _ in range(num_adaptations):
new_adaption = torch.zeros(shape)
if init == "kaiming":
nn.init.kaiming_uniform_(new_adaption, a=math.sqrt(5))
elif init == "normal":
nn.init.normal_(new_adaption)
else:
raise NotImplementedError
weight_data.append(new_adaption)
return torch.stack(weight_data, dim=0)
class LoRAParametrization(nn.Module):
"""
This LoRA implementation was inspired by https://github.com/cccntu/minLoRA
The MIT License (MIT) Copyright (c) 2020 Andrej Karpathy
Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
def __init__(
self,
fan_in: int,
fan_out: int,
layer_type: str = "linear",
num_adaptations: int = 1,
rank: int = 4,
dropout_p: float = 0.0,
alpha: float = 1,
):
super().__init__()
# if weight is stored as (fan_out, fan_in), the memory layout of A & B follows (W + BA)x
# otherwise, it's x(W + AB). This allows us to tie the weights between linear layers and embeddings
fan_in_fan_out = layer_type == "embedding"
self.swap = (lambda x: (x[1], x[0])) if fan_in_fan_out else (lambda x: x)
if layer_type == "linear":
self.lora_A = nn.Parameter(
initialized_weights((rank, fan_in), num_adaptations, init="kaiming")
)
self.lora_B = nn.Parameter(torch.zeros((num_adaptations, fan_out, rank)))
elif layer_type == "embedding":
self.lora_A = nn.Parameter(torch.zeros((num_adaptations, fan_in, rank)))
self.lora_B = nn.Parameter(
initialized_weights(
(rank, fan_out), num_adaptations=num_adaptations, init="normal"
)
)
else:
raise NotImplementedError
self.lora_alpha, self.rank = alpha, rank
self.scaling = alpha / rank
self.lora_dropout = nn.Dropout(p=dropout_p) if dropout_p > 0 else lambda x: x
self.dropout_fn = self._dropout if dropout_p > 0 else lambda x: x
self.register_buffer(
"lora_dropout_mask",
torch.ones(self.swap((1, fan_in)), dtype=self.lora_A.dtype),
persistent=False,
)
self.forward_fn = lambda x: x
self.current_task = None
def _dropout(self, A):
# to mimic the original implementation: A @ dropout(x), we do (A * dropout(ones)) @ x
return A * self.lora_dropout(self.lora_dropout_mask)
def lora_forward(self, X):
assert self.current_task is not None
return (
X
+ torch.matmul(
*self.swap(
(
self.lora_B[self.current_task],
self.dropout_fn(self.lora_A[self.current_task]),
)
)
).view(X.shape)
* self.scaling
)
def forward(self, X):
return self.forward_fn(X)
@property
def current_task(self):
return self._current_task
@current_task.setter
def current_task(self, task: Union[None, int]):
self._current_task = task
if task is None:
self.forward_fn = lambda x: x
else:
self.forward_fn = self.lora_forward
@classmethod
def from_linear(
cls,
layer: nn.Module,
num_adaptations: int,
rank: int,
dropout_p: float,
alpha: float,
):
assert isinstance(layer, nn.Linear)
fan_out, fan_in = layer.weight.shape
return cls(
fan_in,
fan_out,
num_adaptations=num_adaptations,
layer_type="linear",
rank=rank,
dropout_p=dropout_p,
alpha=alpha,
)
@classmethod
def from_embedding(
cls,
layer: nn.Module,
num_adaptations: int,
rank: int,
dropout_p: float,
alpha: float,
):
assert isinstance(layer, nn.Embedding)
fan_in, fan_out = layer.weight.shape
return cls(
fan_in,
fan_out,
num_adaptations=num_adaptations,
layer_type="embedding",
rank=rank,
dropout_p=dropout_p,
alpha=alpha,
)
@classmethod
def add_to_layer(
cls,
layer: nn.Module,
num_adaptations: int,
rank: int,
dropout_p: float,
alpha: float,
):
if isinstance(layer, nn.Linear):
parametrize.register_parametrization(
layer,
"weight",
cls.from_linear(
layer,
num_adaptations=num_adaptations,
rank=rank,
dropout_p=dropout_p,
alpha=alpha,
),
)
elif isinstance(layer, nn.Embedding):
parametrize.register_parametrization(
layer,
"weight",
cls.from_embedding(
layer,
num_adaptations=num_adaptations,
rank=rank,
dropout_p=dropout_p,
alpha=alpha,
),
)
@staticmethod
def select_task_for_layer(layer: nn.Module, task_idx: Optional[int] = None):
if isinstance(layer, LoRAParametrization):
layer.current_task = task_idx
class XLMRobertaLoRA(XLMRobertaModel):
def __init__(
self,
config: XLMRobertaFlashConfig,
):
super().__init__(config)
self._num_adaptations = len(config.lora_adaptations)
self._rank = config.lora_rank
self._dropout_p = config.lora_dropout_p
self._alpha = config.lora_alpha
self._register_lora(
num_adaptations=self._num_adaptations,
rank=self._rank,
dropout_p=self._dropout_p,
alpha=self._alpha,
)
self.main_params_trainable = config.lora_main_params_trainable
self._task_idx = None
# By default, disable LoRA until it's specified which adapter/task to use
self.current_task = None
@property
def main_params_trainable(self):
return self._main_params_trainable
@main_params_trainable.setter
def main_params_trainable(self, val: bool):
"""Whether the main parameters (i.e. those that are not LoRA) should be trainable.
This method sets the `requires_grad_` attribute of the main weights
and controls which parameters are returned in `self.parameters()`.
:param val: Whether or not to make the parameters trainable.
:return: None
"""
self._main_params_trainable = val
for name, param in super().named_parameters():
if "lora" not in name:
param.requires_grad_(val)
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
*model_args,
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
cache_dir: Optional[Union[str, os.PathLike]] = None,
ignore_mismatched_sizes: bool = False,
force_download: bool = False,
local_files_only: bool = False,
token: Optional[Union[str, bool]] = None,
revision: str = "main",
use_safetensors: bool = None,
**kwargs,
):
config = XLMRobertaFlashConfig.from_pretrained(
pretrained_model_name_or_path, *model_args, **kwargs
)
if config.load_trained_adapters:
return super().from_pretrained(
pretrained_model_name_or_path, *model_args, **kwargs
)
else:
torch.set_default_dtype(torch.float16)
return cls(config)
def _register_lora(self, num_adaptations, rank, dropout_p, alpha):
self.apply(
partial(
LoRAParametrization.add_to_layer,
num_adaptations=num_adaptations,
rank=rank,
dropout_p=dropout_p,
alpha=alpha,
)
)
@property
def current_task(self):
"""Which LoRA is currently selected
:return: Integer or None (when LoRA is disabled)
"""
return self._task_idx
@current_task.setter
def current_task(self, task_idx: Union[None, int]):
"""Set the LoRA that is to be used.
The LoRA is specified by `task_idx`, which may be an integer >= 0,
indexing the available LoRAs. If it is None, no LoRA is used.
:param task_idx: Which LoRA to use
:return:
"""
assert task_idx is None or 0 <= task_idx < self._num_adaptations
if self._task_idx != task_idx:
# In this case, we need to update the LoRAs everywhere
self._task_idx = task_idx
self.apply(
partial(LoRAParametrization.select_task_for_layer, task_idx=task_idx)
)
def forward(self, *args, lora_adaptation: Union[None, int] = -1, **kwargs):
if lora_adaptation is None or lora_adaptation >= 0:
self.current_task = lora_adaptation
return super().forward(*args, **kwargs)
def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
for _, param in self.named_parameters(recurse=recurse):
yield param
def named_parameters(
self, prefix: str = "", recurse: bool = True, remove_duplicate: bool = True
) -> Iterator[Tuple[str, Parameter]]:
for name, param in super().named_parameters(
prefix=prefix, recurse=recurse, remove_duplicate=remove_duplicate
):
if "lora" in name or self.main_params_trainable:
yield name, param