michael-guenther commited on
Commit
eb21270
1 Parent(s): 3d87c79

add script to convert weights

Browse files
Files changed (1) hide show
  1. convert_roberta_weights_to_flash.py +175 -0
convert_roberta_weights_to_flash.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ from collections import OrderedDict
3
+ from transformers import BertConfig, PretrainedConfig
4
+ from transformers import XLMRobertaForMaskedLM
5
+
6
+ from flash_attn.models.bert import BertModel
7
+ import torch
8
+
9
+ import click
10
+
11
+ ## inspired by https://github.com/Dao-AILab/flash-attention/blob/85881f547fd1053a7b4a2c3faad6690cca969279/flash_attn/models/bert.py
12
+
13
+
14
+ def remap_state_dict(state_dict, config: PretrainedConfig):
15
+ """
16
+ Map the state_dict of a Huggingface BERT model to be flash_attn compatible.
17
+ """
18
+
19
+ # Replace Roberta with Bert
20
+ def key_mapping_roberta(key):
21
+ return re.sub(r"^roberta.", "bert.", key)
22
+
23
+ state_dict = OrderedDict((key_mapping_roberta(k), v) for k, v in state_dict.items())
24
+
25
+ # LayerNorm
26
+ def key_mapping_ln_gamma_beta(key):
27
+ key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key)
28
+ key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key)
29
+ return key
30
+
31
+ state_dict = OrderedDict(
32
+ (key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items()
33
+ )
34
+
35
+ # Layers
36
+ def key_mapping_layers(key):
37
+ return re.sub(r"^bert.encoder.layer.", "bert.encoder.layers.", key)
38
+
39
+ state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
40
+
41
+ # LayerNorm
42
+ def key_mapping_ln(key):
43
+ key = re.sub(r"^bert.embeddings.LayerNorm.", "bert.emb_ln.", key)
44
+ key = re.sub(
45
+ r"^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)",
46
+ r"bert.encoder.layers.\1.norm1.\2",
47
+ key,
48
+ )
49
+ key = re.sub(
50
+ r"^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)",
51
+ r"bert.encoder.layers.\1.norm2.\2",
52
+ key,
53
+ )
54
+ key = re.sub(
55
+ r"^cls.predictions.transform.LayerNorm.(weight|bias)",
56
+ r"cls.predictions.transform.layer_norm.\1",
57
+ key,
58
+ )
59
+ return key
60
+
61
+ state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
62
+
63
+ # MLP
64
+ def key_mapping_mlp(key):
65
+ key = re.sub(
66
+ r"^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)",
67
+ r"bert.encoder.layers.\1.mlp.fc1.\2",
68
+ key,
69
+ )
70
+ key = re.sub(
71
+ r"^bert.encoder.layers.(\d+).output.dense.(weight|bias)",
72
+ r"bert.encoder.layers.\1.mlp.fc2.\2",
73
+ key,
74
+ )
75
+ return key
76
+
77
+ state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
78
+
79
+ # Attention
80
+ last_layer_subset = getattr(config, "last_layer_subset", False)
81
+ for d in range(config.num_hidden_layers):
82
+ Wq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.weight")
83
+ Wk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.weight")
84
+ Wv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.weight")
85
+ bq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.bias")
86
+ bk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.bias")
87
+ bv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.bias")
88
+ if not (last_layer_subset and d == config.num_hidden_layers - 1):
89
+ state_dict[f"bert.encoder.layers.{d}.mixer.Wqkv.weight"] = torch.cat(
90
+ [Wq, Wk, Wv], dim=0
91
+ )
92
+ state_dict[f"bert.encoder.layers.{d}.mixer.Wqkv.bias"] = torch.cat(
93
+ [bq, bk, bv], dim=0
94
+ )
95
+ else:
96
+ state_dict[f"bert.encoder.layers.{d}.mixer.Wq.weight"] = Wq
97
+ state_dict[f"bert.encoder.layers.{d}.mixer.Wkv.weight"] = torch.cat(
98
+ [Wk, Wv], dim=0
99
+ )
100
+ state_dict[f"bert.encoder.layers.{d}.mixer.Wq.bias"] = bq
101
+ state_dict[f"bert.encoder.layers.{d}.mixer.Wkv.bias"] = torch.cat(
102
+ [bk, bv], dim=0
103
+ )
104
+
105
+ def key_mapping_attn(key):
106
+ return re.sub(
107
+ r"^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)",
108
+ r"bert.encoder.layers.\1.mixer.out_proj.\2",
109
+ key,
110
+ )
111
+
112
+ state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
113
+
114
+ def key_mapping_decoder_bias(key):
115
+ return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key)
116
+
117
+ state_dict = OrderedDict(
118
+ (key_mapping_decoder_bias(k), v) for k, v in state_dict.items()
119
+ )
120
+
121
+ # Word embedding
122
+ pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
123
+ if pad_vocab_size_multiple > 1:
124
+ word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
125
+ state_dict["bert.embeddings.word_embeddings.weight"] = F.pad(
126
+ word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0])
127
+ )
128
+ decoder_weight = state_dict["cls.predictions.decoder.weight"]
129
+ state_dict["cls.predictions.decoder.weight"] = F.pad(
130
+ decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0])
131
+ )
132
+ # If the vocab was padded, we want to set the decoder bias for those padded indices to be
133
+ # strongly negative (i.e. the decoder shouldn't predict those indices).
134
+ # TD [2022-05-09]: I don't think it affects the MLPerf training.
135
+ decoder_bias = state_dict["cls.predictions.decoder.bias"]
136
+ state_dict["cls.predictions.decoder.bias"] = F.pad(
137
+ decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0
138
+ )
139
+
140
+ # Embeddings
141
+ def key_remove_bert(key):
142
+ return re.sub(r"^bert.", "", key)
143
+
144
+ state_dict = OrderedDict(
145
+ (key_remove_bert(k), v)
146
+ for k, v in state_dict.items()
147
+ if not k.startswith('lm_head')
148
+ )
149
+
150
+ return state_dict
151
+
152
+
153
+ @click.command()
154
+ @click.option('--model_name', default='FacebookAI/xlm-roberta-base', help='model name')
155
+ @click.option('--output', default='converted_roberta_weights.bin', help='model name')
156
+ def main(model_name, output):
157
+ roberta_model = XLMRobertaForMaskedLM.from_pretrained(model_name)
158
+ config = BertConfig.from_dict(roberta_model.config.to_dict())
159
+ state_dict = roberta_model.state_dict()
160
+ new_state_dict = remap_state_dict(state_dict, config)
161
+
162
+ flash_model = BertModel(config)
163
+
164
+ for k, v in flash_model.state_dict().items():
165
+ if k not in new_state_dict:
166
+ print(f'Use old weights from {k}')
167
+ new_state_dict[k] = v
168
+
169
+ flash_model.load_state_dict(new_state_dict)
170
+
171
+ torch.save(new_state_dict, output)
172
+
173
+
174
+ if __name__ == '__main__':
175
+ main()