--- license: apache-2.0 tags: - generated_from_keras_callback - biology - medical model-index: - name: jjglilleberg/bert-finetuned-ner-nbci-disease results: [] datasets: - ncbi_disease language: - en metrics: - seqeval library_name: keras pipeline_tag: token-classification --- # jjglilleberg/bert-finetuned-ner-nbci-disease This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the [NCBI Disease Dataset](https://www.ncbi.nlm.nih.gov/research/bionlp/Data/disease/). It achieves the following results on the evaluation set: - Precision: 0.759090909090909, - Recall: 0.8487928843710292, - F1: 0.8014397120575885, - Number: 787, - Overall_precision: 0.759090909090909, - Overall_recall: 0.8487928843710292, - Overall_f1: 0.8014397120575885, - Overall_accuracy: 0.9824785260799204 ## Model description More information needed ## Intended uses & limitations The intended use of this model is for Disease Name Recognition and Concept Normalization. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: - 'name': 'AdamWeightDecay', - 'learning_rate': - 'class_name': 'PolynomialDecay', - 'config': - 'initial_learning_rate': 2e-05, - 'decay_steps': 1020, - 'end_learning_rate': 0.0, - 'power': 1.0, - 'cycle': False, - 'name': None - 'decay': 0.0, - 'beta_1': 0.9, - 'beta_2': 0.999, - 'epsilon': 1e-08, - 'amsgrad': False, - 'weight_decay_rate': 0.01 - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1281 | 0.0561 | 0 | | 0.0372 | 0.0596 | 1 | | 0.0211 | 0.0645 | 2 | ### Framework versions - Transformers 4.28.0 - TensorFlow 2.12.0 - Datasets 2.11.0 - Tokenizers 0.13.3