jjglilleberg commited on
Commit
b624756
1 Parent(s): 95aadb5

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - f1
7
+ model-index:
8
+ - name: xlm-roberta-base-finetuned-panx-all
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # xlm-roberta-base-finetuned-panx-all
16
+
17
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.1917
20
+ - F1: 0.8522
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 5e-05
40
+ - train_batch_size: 4
41
+ - eval_batch_size: 4
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 4
44
+ - total_train_batch_size: 16
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - num_epochs: 3
48
+ - mixed_precision_training: Native AMP
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | F1 |
53
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
54
+ | No log | 1.0 | 1251 | 0.2072 | 0.8084 |
55
+ | No log | 2.0 | 2502 | 0.1911 | 0.8350 |
56
+ | No log | 3.0 | 3753 | 0.1917 | 0.8522 |
57
+
58
+
59
+ ### Framework versions
60
+
61
+ - Transformers 4.25.1
62
+ - Pytorch 1.13.0+cu116
63
+ - Datasets 2.8.0
64
+ - Tokenizers 0.13.2