--- license: gemma base_model: google/gemma-2-2b tags: - trl - sft - generated_from_trainer model-index: - name: collapse_gemma-2-2b_hs2_iter1_sftsd2 results: [] --- # collapse_gemma-2-2b_hs2_iter1_sftsd2 This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0646 - Num Input Tokens Seen: 5690264 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 8 - eval_batch_size: 16 - seed: 2 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | No log | 0 | 0 | 1.3956 | 0 | | 1.2529 | 0.0511 | 5 | 1.2627 | 295904 | | 1.1843 | 0.1021 | 10 | 1.1704 | 591104 | | 1.1523 | 0.1532 | 15 | 1.1333 | 883280 | | 1.0979 | 0.2042 | 20 | 1.1076 | 1177976 | | 1.0923 | 0.2553 | 25 | 1.0980 | 1470072 | | 1.07 | 0.3063 | 30 | 1.0926 | 1759320 | | 1.1217 | 0.3574 | 35 | 1.0887 | 2048280 | | 1.0978 | 0.4084 | 40 | 1.0847 | 2339776 | | 1.0604 | 0.4595 | 45 | 1.0816 | 2632712 | | 1.0608 | 0.5105 | 50 | 1.0787 | 2926200 | | 1.1238 | 0.5616 | 55 | 1.0767 | 3220536 | | 1.0663 | 0.6126 | 60 | 1.0750 | 3515696 | | 1.0059 | 0.6637 | 65 | 1.0730 | 3804824 | | 1.0991 | 0.7147 | 70 | 1.0714 | 4101032 | | 1.1119 | 0.7658 | 75 | 1.0698 | 4391096 | | 1.0905 | 0.8168 | 80 | 1.0688 | 4688752 | | 1.0574 | 0.8679 | 85 | 1.0676 | 4981792 | | 1.1394 | 0.9190 | 90 | 1.0661 | 5276840 | | 1.1296 | 0.9700 | 95 | 1.0651 | 5572144 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1