--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.83 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6889 - Accuracy: 0.83 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 20 - eval_batch_size: 20 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1788 | 1.0 | 45 | 2.0607 | 0.41 | | 1.573 | 2.0 | 90 | 1.5523 | 0.49 | | 1.2957 | 3.0 | 135 | 1.2926 | 0.6 | | 1.0198 | 4.0 | 180 | 1.0833 | 0.74 | | 0.9007 | 5.0 | 225 | 0.9275 | 0.79 | | 0.7798 | 6.0 | 270 | 0.8880 | 0.76 | | 0.744 | 7.0 | 315 | 0.7562 | 0.84 | | 0.5967 | 8.0 | 360 | 0.7294 | 0.8 | | 0.5833 | 9.0 | 405 | 0.7123 | 0.8 | | 0.6378 | 10.0 | 450 | 0.6889 | 0.83 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.1