--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-large-finetuned-augument-visquad2-27-3-2023-3 results: [] --- # xlm-roberta-large-finetuned-augument-visquad2-27-3-2023-3 This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Best F1: 75.3631 - Loss: 2.0450 - Exact: 38.9165 - F1: 56.3720 - Total: 3821 - Hasans Exact: 55.9744 - Hasans F1: 81.1148 - Hasans Total: 2653 - Noans Exact: 0.1712 - Noans F1: 0.1712 - Noans Total: 1168 - Best Exact: 59.7749 - Best Exact Thresh: 0.5183 - Best F1 Thresh: 0.8690 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Best F1 | Validation Loss | Exact | F1 | Total | Hasans Exact | Hasans F1 | Hasans Total | Noans Exact | Noans F1 | Noans Total | Best Exact | Best Exact Thresh | Best F1 Thresh | |:-------------:|:-----:|:-----:|:-------:|:---------------:|:-------:|:-------:|:-----:|:------------:|:---------:|:------------:|:-----------:|:--------:|:-----------:|:----------:|:-----------------:|:--------------:| | 0.8597 | 1.0 | 4221 | 66.4890 | 1.2255 | 36.1947 | 54.1414 | 3821 | 52.1297 | 77.9775 | 2653 | 0.0 | 0.0 | 1168 | 52.9704 | 0.8158 | 0.9074 | | 0.4623 | 2.0 | 8443 | 70.0050 | 1.1813 | 37.8173 | 55.5970 | 3821 | 54.4666 | 80.0740 | 2653 | 0.0 | 0.0 | 1168 | 55.1950 | 0.7529 | 0.8275 | | 0.2999 | 3.0 | 12664 | 75.0810 | 1.2417 | 39.8587 | 56.3329 | 3821 | 57.3690 | 81.0961 | 2653 | 0.0856 | 0.0856 | 1168 | 60.4030 | 0.9294 | 0.9459 | | 0.1915 | 4.0 | 16886 | 74.7037 | 1.6500 | 38.7333 | 56.2476 | 3821 | 55.7482 | 80.9733 | 2653 | 0.0856 | 0.0856 | 1168 | 58.6496 | 0.7690 | 0.9767 | | 0.1185 | 5.0 | 21105 | 75.3631 | 2.0450 | 38.9165 | 56.3720 | 3821 | 55.9744 | 81.1148 | 2653 | 0.1712 | 0.1712 | 1168 | 59.7749 | 0.5183 | 0.8690 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2