Text2Text Generation
Transformers
Inference Endpoints
jncraton commited on
Commit
1f57070
1 Parent(s): a6e45be

Add original readme

Browse files
Files changed (1) hide show
  1. README.md +272 -0
README.md CHANGED
@@ -1,3 +1,275 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ - fr
5
+ - ro
6
+ - de
7
+ - multilingual
8
+
9
+ widget:
10
+ - text: "Translate to German: My name is Arthur"
11
+ example_title: "Translation"
12
+ - text: "Please answer to the following question. Who is going to be the next Ballon d'or?"
13
+ example_title: "Question Answering"
14
+ - text: "Q: Can Geoffrey Hinton have a conversation with George Washington? Give the rationale before answering."
15
+ example_title: "Logical reasoning"
16
+ - text: "Please answer the following question. What is the boiling point of Nitrogen?"
17
+ example_title: "Scientific knowledge"
18
+ - text: "Answer the following yes/no question. Can you write a whole Haiku in a single tweet?"
19
+ example_title: "Yes/no question"
20
+ - text: "Answer the following yes/no question by reasoning step-by-step. Can you write a whole Haiku in a single tweet?"
21
+ example_title: "Reasoning task"
22
+ - text: "Q: ( False or not False or False ) is? A: Let's think step by step"
23
+ example_title: "Boolean Expressions"
24
+ - text: "The square root of x is the cube root of y. What is y to the power of 2, if x = 4?"
25
+ example_title: "Math reasoning"
26
+ - text: "Premise: At my age you will probably have learnt one lesson. Hypothesis: It's not certain how many lessons you'll learn by your thirties. Does the premise entail the hypothesis?"
27
+ example_title: "Premise and hypothesis"
28
+
29
+ tags:
30
+ - text2text-generation
31
+
32
+ datasets:
33
+ - svakulenk0/qrecc
34
+ - taskmaster2
35
+ - djaym7/wiki_dialog
36
+ - deepmind/code_contests
37
+ - lambada
38
+ - gsm8k
39
+ - aqua_rat
40
+ - esnli
41
+ - quasc
42
+ - qed
43
+
44
+
45
  license: apache-2.0
46
  ---
47
+
48
+ # Model Card for FLAN-T5 large
49
+
50
+ ![model image](https://s3.amazonaws.com/moonup/production/uploads/1666363435475-62441d1d9fdefb55a0b7d12c.png)
51
+
52
+ # Table of Contents
53
+
54
+ 0. [TL;DR](#TL;DR)
55
+ 1. [Model Details](#model-details)
56
+ 2. [Usage](#usage)
57
+ 3. [Uses](#uses)
58
+ 4. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
59
+ 5. [Training Details](#training-details)
60
+ 6. [Evaluation](#evaluation)
61
+ 7. [Environmental Impact](#environmental-impact)
62
+ 8. [Citation](#citation)
63
+ 9. [Model Card Authors](#model-card-authors)
64
+
65
+ # TL;DR
66
+
67
+ If you already know T5, FLAN-T5 is just better at everything. For the same number of parameters, these models have been fine-tuned on more than 1000 additional tasks covering also more languages.
68
+ As mentioned in the first few lines of the abstract :
69
+ > Flan-PaLM 540B achieves state-of-the-art performance on several benchmarks, such as 75.2% on five-shot MMLU. We also publicly release Flan-T5 checkpoints,1 which achieve strong few-shot performance even compared to much larger models, such as PaLM 62B. Overall, instruction finetuning is a general method for improving the performance and usability of pretrained language models.
70
+
71
+ **Disclaimer**: Content from **this** model card has been written by the Hugging Face team, and parts of it were copy pasted from the [T5 model card](https://huggingface.co/t5-large).
72
+
73
+ # Model Details
74
+
75
+ ## Model Description
76
+
77
+
78
+ - **Model type:** Language model
79
+ - **Language(s) (NLP):** English, Spanish, Japanese, Persian, Hindi, French, Chinese, Bengali, Gujarati, German, Telugu, Italian, Arabic, Polish, Tamil, Marathi, Malayalam, Oriya, Panjabi, Portuguese, Urdu, Galician, Hebrew, Korean, Catalan, Thai, Dutch, Indonesian, Vietnamese, Bulgarian, Filipino, Central Khmer, Lao, Turkish, Russian, Croatian, Swedish, Yoruba, Kurdish, Burmese, Malay, Czech, Finnish, Somali, Tagalog, Swahili, Sinhala, Kannada, Zhuang, Igbo, Xhosa, Romanian, Haitian, Estonian, Slovak, Lithuanian, Greek, Nepali, Assamese, Norwegian
80
+ - **License:** Apache 2.0
81
+ - **Related Models:** [All FLAN-T5 Checkpoints](https://huggingface.co/models?search=flan-t5)
82
+ - **Original Checkpoints:** [All Original FLAN-T5 Checkpoints](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints)
83
+ - **Resources for more information:**
84
+ - [Research paper](https://arxiv.org/pdf/2210.11416.pdf)
85
+ - [GitHub Repo](https://github.com/google-research/t5x)
86
+ - [Hugging Face FLAN-T5 Docs (Similar to T5) ](https://huggingface.co/docs/transformers/model_doc/t5)
87
+
88
+ # Usage
89
+
90
+ Find below some example scripts on how to use the model in `transformers`:
91
+
92
+ ## Using the Pytorch model
93
+
94
+ ### Running the model on a CPU
95
+
96
+ <details>
97
+ <summary> Click to expand </summary>
98
+
99
+ ```python
100
+
101
+ from transformers import T5Tokenizer, T5ForConditionalGeneration
102
+
103
+ tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large")
104
+ model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large")
105
+
106
+ input_text = "translate English to German: How old are you?"
107
+ input_ids = tokenizer(input_text, return_tensors="pt").input_ids
108
+
109
+ outputs = model.generate(input_ids)
110
+ print(tokenizer.decode(outputs[0]))
111
+ ```
112
+
113
+ </details>
114
+
115
+ ### Running the model on a GPU
116
+
117
+ <details>
118
+ <summary> Click to expand </summary>
119
+
120
+ ```python
121
+ # pip install accelerate
122
+ from transformers import T5Tokenizer, T5ForConditionalGeneration
123
+
124
+ tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large")
125
+ model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large", device_map="auto")
126
+
127
+ input_text = "translate English to German: How old are you?"
128
+ input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
129
+
130
+ outputs = model.generate(input_ids)
131
+ print(tokenizer.decode(outputs[0]))
132
+ ```
133
+
134
+ </details>
135
+
136
+ ### Running the model on a GPU using different precisions
137
+
138
+ #### FP16
139
+
140
+ <details>
141
+ <summary> Click to expand </summary>
142
+
143
+ ```python
144
+ # pip install accelerate
145
+ import torch
146
+ from transformers import T5Tokenizer, T5ForConditionalGeneration
147
+
148
+ tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large")
149
+ model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large", device_map="auto", torch_dtype=torch.float16)
150
+
151
+ input_text = "translate English to German: How old are you?"
152
+ input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
153
+
154
+ outputs = model.generate(input_ids)
155
+ print(tokenizer.decode(outputs[0]))
156
+ ```
157
+
158
+ </details>
159
+
160
+ #### INT8
161
+
162
+ <details>
163
+ <summary> Click to expand </summary>
164
+
165
+ ```python
166
+ # pip install bitsandbytes accelerate
167
+ from transformers import T5Tokenizer, T5ForConditionalGeneration
168
+
169
+ tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large")
170
+ model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large", device_map="auto", load_in_8bit=True)
171
+
172
+ input_text = "translate English to German: How old are you?"
173
+ input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
174
+
175
+ outputs = model.generate(input_ids)
176
+ print(tokenizer.decode(outputs[0]))
177
+ ```
178
+
179
+ </details>
180
+
181
+ # Uses
182
+
183
+ ## Direct Use and Downstream Use
184
+
185
+ The authors write in [the original paper's model card](https://arxiv.org/pdf/2210.11416.pdf) that:
186
+
187
+ > The primary use is research on language models, including: research on zero-shot NLP tasks and in-context few-shot learning NLP tasks, such as reasoning, and question answering; advancing fairness and safety research, and understanding limitations of current large language models
188
+
189
+ See the [research paper](https://arxiv.org/pdf/2210.11416.pdf) for further details.
190
+
191
+ ## Out-of-Scope Use
192
+
193
+ More information needed.
194
+
195
+ # Bias, Risks, and Limitations
196
+
197
+ The information below in this section are copied from the model's [official model card](https://arxiv.org/pdf/2210.11416.pdf):
198
+
199
+ > Language models, including Flan-T5, can potentially be used for language generation in a harmful way, according to Rae et al. (2021). Flan-T5 should not be used directly in any application, without a prior assessment of safety and fairness concerns specific to the application.
200
+
201
+ ## Ethical considerations and risks
202
+
203
+ > Flan-T5 is fine-tuned on a large corpus of text data that was not filtered for explicit content or assessed for existing biases. As a result the model itself is potentially vulnerable to generating equivalently inappropriate content or replicating inherent biases in the underlying data.
204
+
205
+ ## Known Limitations
206
+
207
+ > Flan-T5 has not been tested in real world applications.
208
+
209
+ ## Sensitive Use:
210
+
211
+ > Flan-T5 should not be applied for any unacceptable use cases, e.g., generation of abusive speech.
212
+
213
+ # Training Details
214
+
215
+ ## Training Data
216
+
217
+ The model was trained on a mixture of tasks, that includes the tasks described in the table below (from the original paper, figure 2):
218
+
219
+ ![table.png](https://s3.amazonaws.com/moonup/production/uploads/1666363265279-62441d1d9fdefb55a0b7d12c.png)
220
+
221
+
222
+ ## Training Procedure
223
+
224
+ According to the model card from the [original paper](https://arxiv.org/pdf/2210.11416.pdf):
225
+
226
+ > These models are based on pretrained T5 (Raffel et al., 2020) and fine-tuned with instructions for better zero-shot and few-shot performance. There is one fine-tuned Flan model per T5 model size.
227
+
228
+ The model has been trained on TPU v3 or TPU v4 pods, using [`t5x`](https://github.com/google-research/t5x) codebase together with [`jax`](https://github.com/google/jax).
229
+
230
+
231
+ # Evaluation
232
+
233
+ ## Testing Data, Factors & Metrics
234
+
235
+ The authors evaluated the model on various tasks covering several languages (1836 in total). See the table below for some quantitative evaluation:
236
+ ![image.png](https://s3.amazonaws.com/moonup/production/uploads/1668072995230-62441d1d9fdefb55a0b7d12c.png)
237
+ For full details, please check the [research paper](https://arxiv.org/pdf/2210.11416.pdf).
238
+
239
+ ## Results
240
+
241
+ For full results for FLAN-T5-Large, see the [research paper](https://arxiv.org/pdf/2210.11416.pdf), Table 3.
242
+
243
+ # Environmental Impact
244
+
245
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
246
+
247
+ - **Hardware Type:** Google Cloud TPU Pods - TPU v3 or TPU v4 | Number of chips ≥ 4.
248
+ - **Hours used:** More information needed
249
+ - **Cloud Provider:** GCP
250
+ - **Compute Region:** More information needed
251
+ - **Carbon Emitted:** More information needed
252
+
253
+ # Citation
254
+
255
+ **BibTeX:**
256
+
257
+ ```bibtex
258
+ @misc{https://doi.org/10.48550/arxiv.2210.11416,
259
+ doi = {10.48550/ARXIV.2210.11416},
260
+
261
+ url = {https://arxiv.org/abs/2210.11416},
262
+
263
+ author = {Chung, Hyung Won and Hou, Le and Longpre, Shayne and Zoph, Barret and Tay, Yi and Fedus, William and Li, Eric and Wang, Xuezhi and Dehghani, Mostafa and Brahma, Siddhartha and Webson, Albert and Gu, Shixiang Shane and Dai, Zhuyun and Suzgun, Mirac and Chen, Xinyun and Chowdhery, Aakanksha and Narang, Sharan and Mishra, Gaurav and Yu, Adams and Zhao, Vincent and Huang, Yanping and Dai, Andrew and Yu, Hongkun and Petrov, Slav and Chi, Ed H. and Dean, Jeff and Devlin, Jacob and Roberts, Adam and Zhou, Denny and Le, Quoc V. and Wei, Jason},
264
+
265
+ keywords = {Machine Learning (cs.LG), Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
266
+
267
+ title = {Scaling Instruction-Finetuned Language Models},
268
+
269
+ publisher = {arXiv},
270
+
271
+ year = {2022},
272
+
273
+ copyright = {Creative Commons Attribution 4.0 International}
274
+ }
275
+ ```