joaoxg commited on
Commit
e869348
Β·
2 Parent(s): b28662c 1fe5ad9

Merge HuggingFace individual and organization repos

Browse files
Files changed (1) hide show
  1. README.md +79 -78
README.md CHANGED
@@ -1,81 +1,82 @@
1
  ---
2
  license: apache-2.0
3
  ---
4
- Cookiecutter-MLOps
5
- ==============================
6
-
7
- A cookiecutter template employing MLOps best practices, so you can focus on building machine learning products while
8
- having MLOps best practices applied.
9
-
10
- Instructions
11
- ------------
12
- 1. Clone the repo.
13
- 2. Run `make dirs` to create the missing parts of the directory structure described below.
14
- 3. *Optional:* Run `make virtualenv` to create a python virtual environment. Skip if using conda or some other env manager.
15
- 1. Run `source env/bin/activate` to activate the virtualenv.
16
- 4. Run `make requirements` to install required python packages.
17
- 5. Put the raw data in `data/raw`.
18
- 6. To save the raw data to the DVC cache, run `dvc add data/raw`
19
- 7. Edit the code files to your heart's desire.
20
- 8. Process your data, train and evaluate your model using `dvc repro` or `make reproduce`
21
- 9. To run the pre-commit hooks, run `make pre-commit-install`
22
- 10. For setting up data validation tests, run `make setup-setup-data-validation`
23
- 11. For **running** the data validation tests, run `make run-data-validation`
24
- 12. When you're happy with the result, commit files (including .dvc files) to git.
25
-
26
- Project Organization
27
- ------------
28
-
29
- β”œβ”€β”€ LICENSE
30
- β”œβ”€β”€ Makefile <- Makefile with commands like `make dirs` or `make clean`
31
- β”œβ”€β”€ README.md <- The top-level README for developers using this project.
32
- β”œβ”€β”€ data
33
- β”‚Β Β  β”œβ”€β”€ processed <- The final, canonical data sets for modeling.
34
- β”‚Β Β  └── raw <- The original, immutable data dump
35
- β”‚
36
- β”œβ”€β”€ models <- Trained and serialized models, model predictions, or model summaries
37
- β”‚
38
- β”œβ”€β”€ notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
39
- β”‚ the creator's initials, and a short `-` delimited description, e.g.
40
- β”‚ `1.0-jqp-initial-data-exploration`.
41
- β”œβ”€β”€ references <- Data dictionaries, manuals, and all other explanatory materials.
42
- β”œβ”€β”€ reports <- Generated analysis as HTML, PDF, LaTeX, etc.
43
- β”‚Β Β  └── figures <- Generated graphics and figures to be used in reporting
44
- β”‚Β Β  └── metrics.txt <- Relevant metrics after evaluating the model.
45
- β”‚Β Β  └── training_metrics.txt <- Relevant metrics from training the model.
46
- β”‚
47
- β”œβ”€β”€ requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
48
- β”‚ generated with `pip freeze > requirements.txt`
49
- β”‚
50
- β”œβ”€β”€ setup.py <- makes project pip installable (pip install -e .) so src can be imported
51
- β”œβ”€β”€ src <- Source code for use in this project.
52
- β”‚Β Β  β”œβ”€β”€ __init__.py <- Makes src a Python module
53
- β”‚ β”‚
54
- β”‚Β Β  β”œβ”€β”€ data <- Scripts to download or generate data
55
- β”‚Β Β  β”‚Β Β  β”œβ”€β”€ great_expectations <- Folder containing data integrity check files
56
- β”‚Β Β  β”‚Β Β  β”œβ”€β”€ make_dataset.py
57
- β”‚Β Β  β”‚Β Β  └── data_validation.py <- Script to run data integrity checks
58
- β”‚ β”‚
59
- β”‚Β Β  β”œβ”€β”€ models <- Scripts to train models and then use trained models to make
60
- β”‚ β”‚ β”‚ predictions
61
- β”‚Β Β  β”‚Β Β  β”œβ”€β”€ predict_model.py
62
- β”‚Β Β  β”‚Β Β  └── train_model.py
63
- β”‚ β”‚
64
- β”‚Β Β  └── visualization <- Scripts to create exploratory and results oriented visualizations
65
- β”‚Β Β  └── visualize.py
66
- β”‚
67
- β”œβ”€β”€ .pre-commit-config.yaml <- pre-commit hooks file with selected hooks for the projects.
68
- β”œβ”€β”€ dvc.lock <- constructs the ML pipeline with defined stages.
69
- └── dvc.yaml <- Traing a model on the processed data.
70
-
71
-
72
- --------
73
-
74
- <p><small>Project based on the <a target="_blank" href="https://drivendata.github.io/cookiecutter-data-science/">cookiecutter data science project template</a>. #cookiecutterdatascience</small></p>
75
-
76
-
77
- ---
78
-
79
- To create a project like this, just go to https://dagshub.com/repo/create and select the **Cookiecutter DVC** project template.
80
-
81
- Made with 🐢 by [DAGsHub](https://dagshub.com/).
 
 
1
  ---
2
  license: apache-2.0
3
  ---
4
+
5
+ Cookiecutter-MLOps
6
+ ==============================
7
+
8
+ A cookiecutter template employing MLOps best practices, so you can focus on building machine learning products while
9
+ having MLOps best practices applied.
10
+
11
+ Instructions
12
+ ------------
13
+ 1. Clone the repo.
14
+ 2. Run `make dirs` to create the missing parts of the directory structure described below.
15
+ 3. *Optional:* Run `make virtualenv` to create a python virtual environment. Skip if using conda or some other env manager.
16
+ 1. Run `source env/bin/activate` to activate the virtualenv.
17
+ 4. Run `make requirements` to install required python packages.
18
+ 5. Put the raw data in `data/raw`.
19
+ 6. To save the raw data to the DVC cache, run `dvc add data/raw`
20
+ 7. Edit the code files to your heart's desire.
21
+ 8. Process your data, train and evaluate your model using `dvc repro` or `make reproduce`
22
+ 9. To run the pre-commit hooks, run `make pre-commit-install`
23
+ 10. For setting up data validation tests, run `make setup-setup-data-validation`
24
+ 11. For **running** the data validation tests, run `make run-data-validation`
25
+ 12. When you're happy with the result, commit files (including .dvc files) to git.
26
+
27
+ Project Organization
28
+ ------------
29
+
30
+ β”œβ”€β”€ LICENSE
31
+ β”œβ”€β”€ Makefile <- Makefile with commands like `make dirs` or `make clean`
32
+ β”œβ”€β”€ README.md <- The top-level README for developers using this project.
33
+ β”œβ”€β”€ data
34
+ β”‚Β Β  β”œβ”€β”€ processed <- The final, canonical data sets for modeling.
35
+ β”‚Β Β  └── raw <- The original, immutable data dump
36
+ β”‚
37
+ β”œβ”€β”€ models <- Trained and serialized models, model predictions, or model summaries
38
+ β”‚
39
+ β”œβ”€β”€ notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
40
+ β”‚ the creator's initials, and a short `-` delimited description, e.g.
41
+ β”‚ `1.0-jqp-initial-data-exploration`.
42
+ β”œβ”€β”€ references <- Data dictionaries, manuals, and all other explanatory materials.
43
+ β”œβ”€β”€ reports <- Generated analysis as HTML, PDF, LaTeX, etc.
44
+ β”‚Β Β  └── figures <- Generated graphics and figures to be used in reporting
45
+ β”‚Β Β  └── metrics.txt <- Relevant metrics after evaluating the model.
46
+ β”‚Β Β  └── training_metrics.txt <- Relevant metrics from training the model.
47
+ β”‚
48
+ β”œβ”€β”€ requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
49
+ β”‚ generated with `pip freeze > requirements.txt`
50
+ β”‚
51
+ β”œβ”€β”€ setup.py <- makes project pip installable (pip install -e .) so src can be imported
52
+ β”œβ”€β”€ src <- Source code for use in this project.
53
+ β”‚Β Β  β”œβ”€β”€ __init__.py <- Makes src a Python module
54
+ β”‚ β”‚
55
+ β”‚Β Β  β”œβ”€β”€ data <- Scripts to download or generate data
56
+ β”‚Β Β  β”‚Β Β  β”œβ”€β”€ great_expectations <- Folder containing data integrity check files
57
+ β”‚Β Β  β”‚Β Β  β”œβ”€β”€ make_dataset.py
58
+ β”‚Β Β  β”‚Β Β  └── data_validation.py <- Script to run data integrity checks
59
+ β”‚ β”‚
60
+ β”‚Β Β  β”œβ”€β”€ models <- Scripts to train models and then use trained models to make
61
+ β”‚ β”‚ β”‚ predictions
62
+ β”‚Β Β  β”‚Β Β  β”œβ”€β”€ predict_model.py
63
+ β”‚Β Β  β”‚Β Β  └── train_model.py
64
+ β”‚ β”‚
65
+ β”‚Β Β  └── visualization <- Scripts to create exploratory and results oriented visualizations
66
+ β”‚Β Β  └── visualize.py
67
+ β”‚
68
+ β”œβ”€β”€ .pre-commit-config.yaml <- pre-commit hooks file with selected hooks for the projects.
69
+ β”œβ”€β”€ dvc.lock <- constructs the ML pipeline with defined stages.
70
+ └── dvc.yaml <- Traing a model on the processed data.
71
+
72
+
73
+ --------
74
+
75
+ <p><small>Project based on the <a target="_blank" href="https://drivendata.github.io/cookiecutter-data-science/">cookiecutter data science project template</a>. #cookiecutterdatascience</small></p>
76
+
77
+
78
+ ---
79
+
80
+ To create a project like this, just go to https://dagshub.com/repo/create and select the **Cookiecutter DVC** project template.
81
+
82
+ Made with 🐢 by [DAGsHub](https://dagshub.com/).