--- license: apache-2.0 --- Set the Cookiecutter-MLOps in Hugging Face ============================================== 1. Create Model repository in Hugging Face (e.g. myHFrepo) 2. Clone your Hugging face repo to your local directory: cd /path/to/parent directory of project folder git clone git@hf.co:USERNAME/myHFrepo For ssh connection check [here](https://huggingface.co/docs/hub/security-git-ssh#add-a-ssh-key-to-your-account) 3. Create your virtual environment (e.g. jointvenv) cd myHFrepo python -m venv jointvenv source jointvenv/bin/activate 4. Transfer and set DagsHub's cookiecutter template employing MLOps best practices to your Huggingface repo git clone https://dagshub.com/DagsHub/Cookiecutter-MLOps.git 4.1 Delete git files cloned from Cookiecutter-MLOps repo rm -r /path/to/myHFrepo/Cookiecutter-MLOps/.git 4.2 dResolve conflicts with .gitattributes and README.md cat /path/to/myHFrepo/Cookiecutter-MLOps/.gitattributes >> /path/to/myHFrepo/.gitattributes rm /path/to/myHFrepo/Cookiecutter-MLOps/.gitattributes git add .gitattributes git commit -m "Paste .gitattributes info from DagsHub/Cookiecutter-MLOps" cat /path/to/myHFrepo/Cookiecutter-MLOps/README.md >> /path/to/myHFrepo/README.md rm /path/to/myHFrepo/Cookiecutter-MLOps/README.md git add README.md git commit -m "Paste README info from DagsHub/Cookiecutter-MLOps" 4.3 Move remaining files from DagsHub/Cookiecutter-MLOps yo your Hugging Face repo .gitattributes and README.md cd /path/to/myHFrepo/Cookiecutter-MLOps mv * .[^.]* .. cd /path/to/myHFrepo rm -r /path/to/myHFrepo/Cookiecutter-MLOps 5. Add venv folder to.gitignore echo '' >> .gitignore echo '#'Virtual Environment >> .gitignore echo jointvenv/ >> .gitignore git add . git commit -m "add remaining DagsHub/Cookiecutter-MLOps repo content" 6. Run step 2 from DagsHub/Cookiecutter-MLOps make dirs 7. Run step 4 from DagsHub/Cookiecutter-MLOps make requirements 8. Keep record of your own requirements mv requirements.txt requirementsCookiecutter-MLOps.txt git add requirementsCookiecutter-MLOps.txt git commit -m "external requirements from Cookiecutter-MLOps" pip freeze > requirements.txt git add requirements.txt git commit -m "First report venv requirements" 9. Push your changes to the remote Hugging face repository git push origin main 10. Optional Create Model repository in your Hugging Face organization (e.g. myHFrepo) git remote add dcc git@hf.co:MYORG/mywslHFrepo git pull dcc main --allow-unrelated-histories Resolve conflicts in .gitattributes and README.md git add . git commit -m "Merge HuggingFace individual and organization repos" git push dcc main ============================== Cookiecutter-MLOps ============================== A cookiecutter template employing MLOps best practices, so you can focus on building machine learning products while having MLOps best practices applied. Instructions ------------ 1. Clone the repo. 2. Run `make dirs` to create the missing parts of the directory structure described below. 3. *Optional:* Run `make virtualenv` to create a python virtual environment. Skip if using conda or some other env manager. 1. Run `source env/bin/activate` to activate the virtualenv. 4. Run `make requirements` to install required python packages. 5. Put the raw data in `data/raw`. 6. To save the raw data to the DVC cache, run `dvc add data/raw` 7. Edit the code files to your heart's desire. 8. Process your data, train and evaluate your model using `dvc repro` or `make reproduce` 9. To run the pre-commit hooks, run `make pre-commit-install` 10. For setting up data validation tests, run `make setup-setup-data-validation` 11. For **running** the data validation tests, run `make run-data-validation` 12. When you're happy with the result, commit files (including .dvc files) to git. Project Organization ------------ ├── LICENSE ├── Makefile <- Makefile with commands like `make dirs` or `make clean` ├── README.md <- The top-level README for developers using this project. ├── data │   ├── processed <- The final, canonical data sets for modeling. │   └── raw <- The original, immutable data dump │ ├── models <- Trained and serialized models, model predictions, or model summaries │ ├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering), │ the creator's initials, and a short `-` delimited description, e.g. │ `1.0-jqp-initial-data-exploration`. ├── references <- Data dictionaries, manuals, and all other explanatory materials. ├── reports <- Generated analysis as HTML, PDF, LaTeX, etc. │   └── figures <- Generated graphics and figures to be used in reporting │   └── metrics.txt <- Relevant metrics after evaluating the model. │   └── training_metrics.txt <- Relevant metrics from training the model. │ ├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g. │ generated with `pip freeze > requirements.txt` │ ├── setup.py <- makes project pip installable (pip install -e .) so src can be imported ├── src <- Source code for use in this project. │   ├── __init__.py <- Makes src a Python module │ │ │   ├── data <- Scripts to download or generate data │   │   ├── great_expectations <- Folder containing data integrity check files │   │   ├── make_dataset.py │   │   └── data_validation.py <- Script to run data integrity checks │ │ │   ├── models <- Scripts to train models and then use trained models to make │ │ │ predictions │   │   ├── predict_model.py │   │   └── train_model.py │ │ │   └── visualization <- Scripts to create exploratory and results oriented visualizations │   └── visualize.py │ ├── .pre-commit-config.yaml <- pre-commit hooks file with selected hooks for the projects. ├── dvc.lock <- constructs the ML pipeline with defined stages. └── dvc.yaml <- Traing a model on the processed data. --------

Project based on the cookiecutter data science project template. #cookiecutterdatascience

--- To create a project like this, just go to https://dagshub.com/repo/create and select the **Cookiecutter DVC** project template. Made with 🐶 by [DAGsHub](https://dagshub.com/).