a2c-PandaReachDense-v3 / config.json
joe-xhedi's picture
Initial commit
7de61dc
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x788833c701f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x788833c65d40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694285422698558270, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAF/hvPzafN7+bb5O/fBmPPpdlLTvFnuI+EHmuvfGc0j5OSE++65gdPw2Oxr6b6S8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAoJqUPytA2L4P6Le/zBtXvg57Kr9W/bU/CtWPvPFBmz+VXKC/4xOFP+13q79OrbQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAX+G8/Np83v5tvk78ZRv8+PnU7PsMOzL98GY8+l2UtO8We4j4YxPM+dt1vOqQUwz4Qea698ZzSPk5IT76zye2/8mTPPwhIsr/rmB0/DY7GvpvpLz/lU9Q/QGbHv+Lejz+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.9373793 -0.7172731 -1.1518434 ]\n [ 0.2794913 0.00264583 0.44261757]\n [-0.08519185 0.41135362 -0.20242426]\n [ 0.6156146 -0.3878025 0.6871583 ]]", "desired_goal": "[[ 1.1609688 -0.42236456 -1.4367694 ]\n [-0.21006697 -0.66594017 1.4217937 ]\n [-0.01755764 1.2129499 -1.2528254 ]\n [ 1.0396694 -1.3395973 1.4115388 ]]", "observation": "[[ 9.3737930e-01 -7.1727312e-01 -1.1518434e+00 4.9858168e-01\n 1.8306443e-01 -1.5942005e+00]\n [ 2.7949131e-01 2.6458257e-03 4.4261757e-01 4.7610545e-01\n 9.1501267e-04 3.8101685e-01]\n [-8.5191846e-02 4.1135362e-01 -2.0242426e-01 -1.8577179e+00\n 1.6202681e+00 -1.3928232e+00]\n [ 6.1561459e-01 -3.8780251e-01 6.8715829e-01 1.6588103e+00\n -1.5578079e+00 1.1239893e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYIPLPXufybzUVrY9HQCWvWqlCD6v22U+05+sPQ8ljL2r09I9IOfnPcie9j3/U+Q9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.09937167 -0.02461218 0.0890328 ]\n [-0.0732424 0.1334435 0.22447084]\n [ 0.08428922 -0.06843006 0.10294279]\n [ 0.1132338 0.12042004 0.11148833]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9iaAnUlRguMAWyUSwSMAXSUR0CnE6sbedkKdX2UKGgGR7/Knl4keIVNaAdLA2gIR0CnE2gPNFBqdX2UKGgGR7/KqQzUI9kjaAdLA2gIR0CnEuM4DLbIdX2UKGgGR7+/gdfb9If9aAdLAmgIR0CnEyxlpXZHdX2UKGgGR7/ELiMo+fRNaAdLAmgIR0CnE7eV1Oj7dX2UKGgGR7/Aj1wo9cKPaAdLAmgIR0CnEu9PUKAsdX2UKGgGR7/MaqCHymQ9aAdLA2gIR0CnE3kMspXqdX2UKGgGR7/AegctGus+aAdLAmgIR0CnEzb/wRXfdX2UKGgGR7+j4gzP8hs7aAdLAWgIR0CnEvX4TK1YdX2UKGgGR7+1vn8sMAmzaAdLAmgIR0CnE0brkbPydX2UKGgGR7/XvmYBvJiiaAdLBGgIR0CnE9iHh0hedX2UKGgGR7/Tm4RVZLZjaAdLA2gIR0CnE5YkNWludX2UKGgGR7/YuAI6bONYaAdLBGgIR0CnExW8qWkadX2UKGgGR7/TMgU1yeZoaAdLA2gIR0CnE1xQaaTfdX2UKGgGR7/Oh6jWTX8PaAdLA2gIR0CnE+d7fHghdX2UKGgGR7/WZ6D5CWu6aAdLA2gIR0CnE6Ri5NGmdX2UKGgGR7+8u3+dbxEwaAdLAmgIR0CnE2YJu2qldX2UKGgGR7/ClrM1TBInaAdLAmgIR0CnE/QKSgXedX2UKGgGR7/WGjKxLTQWaAdLBGgIR0CnEy2pQ1rJdX2UKGgGR7/aVfeDWbw0aAdLBGgIR0CnE77ngYP5dX2UKGgGR7+zxBmf5DZ2aAdLAmgIR0CnEzoDHOrydX2UKGgGR7/NDWsijcmCaAdLA2gIR0CnFAejEehgdX2UKGgGR7/iI4dZJTVEaAdLBWgIR0CnE4aJZW7wdX2UKGgGR7+9Li++M6zWaAdLAmgIR0CnFBPdEb5udX2UKGgGR7/QB42S+xnnaAdLA2gIR0CnE9DUd7v5dX2UKGgGR7/WIGhVU+9raAdLA2gIR0CnE0vGp++edX2UKGgGR7+kQ/X5FgDzaAdLAWgIR0CnE9VuBMBZdX2UKGgGR7/CZxaPjn3daAdLAmgIR0CnE5J0wJw9dX2UKGgGR7+2JCSidrftaAdLAmgIR0CnE1T41xbTdX2UKGgGR7/B8YQ8OkLyaAdLAmgIR0CnE97ExZdOdX2UKGgGR7/ZIbOu7pV0aAdLBGgIR0CnFCa0x/NJdX2UKGgGR7+nmq5sj3VTaAdLAWgIR0CnE+OW0JF9dX2UKGgGR7+KJ66asp5NaAdLAWgIR0CnE+ovi97GdX2UKGgGR7/YWZqmCROlaAdLBGgIR0CnE6dehPCVdX2UKGgGR7/RkRjBl+VkaAdLA2gIR0CnE2VW8yvcdX2UKGgGR7+3JPqLS/j9aAdLAmgIR0CnE/LpaA4GdX2UKGgGR7/Xa86FM7EHaAdLBGgIR0CnFDqSHM2WdX2UKGgGR7/OsU7CBPKuaAdLA2gIR0CnE7Tjm0VrdX2UKGgGR7/LVNHpbD/EaAdLA2gIR0CnE3MOf/WEdX2UKGgGR7+lfkWAPNFCaAdLAWgIR0CnFEAQxvehdX2UKGgGR7/Q5XU6PsAvaAdLA2gIR0CnFARbKRuCdX2UKGgGR7/IhzvJA+pwaAdLA2gIR0CnE4SPMjeLdX2UKGgGR7/OrnTy8SPEaAdLA2gIR0CnFFF3hXKbdX2UKGgGR7+46Mir1dxAaAdLAmgIR0CnFA5pBX0YdX2UKGgGR7/UsqrilzltaAdLBGgIR0CnE8uYx+KCdX2UKGgGR7/BfDUExIrfaAdLAmgIR0CnE42qLjxTdX2UKGgGR7/ESyMUAT7EaAdLAmgIR0CnFBcophF3dX2UKGgGR7/K7jkuHvc8aAdLA2gIR0CnFGEyULUkdX2UKGgGR7/R8YyfthNNaAdLA2gIR0CnE9tAkcCHdX2UKGgGR7/QMewLVnVYaAdLA2gIR0CnE52BSUC8dX2UKGgGR7/KMFUyYXwcaAdLA2gIR0CnFCb9qDbrdX2UKGgGR7/IxIre67NCaAdLA2gIR0CnFG6jN6gNdX2UKGgGR7+y1F6Rhc7haAdLAmgIR0CnE6ZYYBNmdX2UKGgGR7/VzpHI6r/9aAdLBGgIR0CnE+0wSJ0odX2UKGgGR7+kU/OdGy5aaAdLAWgIR0CnE/RjJ+2FdX2UKGgGR7/ANjLB9Cu2aAdLAmgIR0CnE7JzDGcXdX2UKGgGR7/RRwIdELH/aAdLA2gIR0CnFH+sPrfMdX2UKGgGR7/XnSv1UVBVaAdLBGgIR0CnFDyQPqcFdX2UKGgGR7+hfQa72+PBaAdLAWgIR0CnE/mixmkFdX2UKGgGR7+6zE74i5d4aAdLAmgIR0CnFEVdonKGdX2UKGgGR7/Dq1w5vLowaAdLAmgIR0CnFAJ1zQu3dX2UKGgGR7/Tm78Nx2jgaAdLBGgIR0CnFJQuM+/ydX2UKGgGR7+4cdYGMXJpaAdLAmgIR0CnFA4Ny5qedX2UKGgGR7/WpOvdM0xeaAdLBWgIR0CnE8wTdtVJdX2UKGgGR7/IHWz4UN8WaAdLA2gIR0CnFFXCbc46dX2UKGgGR7+nzvqkdmxuaAdLAWgIR0CnE9Ckfs/qdX2UKGgGR7++EJ0GNaQnaAdLAmgIR0CnFF43eenRdX2UKGgGR7/VD7qIJqqPaAdLA2gIR0CnFBuCoS+QdX2UKGgGR7/YKRuCPIXCaAdLBGgIR0CnFKZIQOFydX2UKGgGR7+6s4ku6ErYaAdLAmgIR0CnFGnKOktVdX2UKGgGR7/Fk2gnMMZxaAdLAmgIR0CnFCbmEGqxdX2UKGgGR7/cdXT3IuGsaAdLBGgIR0CnE+UMw1zidX2UKGgGR7/CQSzw+dK/aAdLAmgIR0CnFLLq+rU9dX2UKGgGR7/JGGVRk3CLaAdLA2gIR0CnFHjd56dEdX2UKGgGR7/LBu4wyqMnaAdLA2gIR0CnE/O5avA5dX2UKGgGR7/VkGA08/2TaAdLBGgIR0CnFDoS13MZdX2UKGgGR7/UyY5T6zmfaAdLBGgIR0CnFMcq4H5adX2UKGgGR7+1SqEOAiFCaAdLAmgIR0CnFIQeNkvsdX2UKGgGR7+5vQ4S6DoRaAdLAmgIR0CnE/8AJb+tdX2UKGgGR7/DCEYfnwG4aAdLAmgIR0CnFI2VVxS6dX2UKGgGR7/QD4xk/bCaaAdLA2gIR0CnFErkKeCkdX2UKGgGR7/TU8V58jRlaAdLA2gIR0CnFNX7tRekdX2UKGgGR7/POZb6guh9aAdLA2gIR0CnFA2Op84QdX2UKGgGR7/EAhje9Ba+aAdLAmgIR0CnFFQPRRdhdX2UKGgGR7/LU7Sy+pOvaAdLA2gIR0CnFJ4TK1XvdX2UKGgGR7/OMo+fRNRFaAdLA2gIR0CnFB1Fpfx+dX2UKGgGR7/X3n6l+EytaAdLBGgIR0CnFOpN9H+ZdX2UKGgGR7+C9VWCEpRXaAdLAWgIR0CnFCIWYWtVdX2UKGgGR7/Tk7OmixmkaAdLA2gIR0CnFKvQWvbHdX2UKGgGR7/W6Rhc7hegaAdLBGgIR0CnFGk+X7cgdX2UKGgGR7+AfZElVtGeaAdLAWgIR0CnFCdMK1G9dX2UKGgGR7+RS5y2hIvraAdLAWgIR0CnFLErPMSsdX2UKGgGR7/MN8VpKzzFaAdLA2gIR0CnFPuqNp/PdX2UKGgGR7+z+AEt/WlNaAdLAmgIR0CnFHWq1gIAdX2UKGgGR7+3grH2h7E6aAdLAmgIR0CnFQWmYSg5dX2UKGgGR7/fo60Y0l7daAdLBGgIR0CnFD1WbPQfdX2UKGgGR7/bB1s+FDfFaAdLBGgIR0CnFMb7sOXmdX2UKGgGR7/HJPqLS/j9aAdLA2gIR0CnFIQpF1B/dX2UKGgGR7+TxPO6d1+zaAdLAWgIR0CnFEK7iADrdX2UKGgGR7+hKe05U96kaAdLAWgIR0CnFMyWJJoTdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}