Add new SentenceTransformer model
Browse files- 1_Dense/config.json +1 -0
- 1_Dense/model.safetensors +3 -0
- README.md +934 -0
- config.json +46 -0
- config_sentence_transformers.json +49 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +31 -0
- tokenizer.json +0 -0
- tokenizer_config.json +968 -0
1_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 768, "out_features": 128, "bias": false, "activation_function": "torch.nn.modules.linear.Identity"}
|
1_Dense/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:baed1eb195b645cff428228265bca73161d512c5ef977b45ca8121ab7bba1417
|
3 |
+
size 393304
|
README.md
ADDED
@@ -0,0 +1,934 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: answerdotai/ModernBERT-base
|
3 |
+
datasets:
|
4 |
+
- lightonai/ms-marco-en-bge
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
library_name: PyLate
|
8 |
+
pipeline_tag: sentence-similarity
|
9 |
+
tags:
|
10 |
+
- ColBERT
|
11 |
+
- PyLate
|
12 |
+
- sentence-transformers
|
13 |
+
- sentence-similarity
|
14 |
+
- feature-extraction
|
15 |
+
- generated_from_trainer
|
16 |
+
- dataset_size:808728
|
17 |
+
- loss:Distillation
|
18 |
+
---
|
19 |
+
|
20 |
+
# PyLate model based on answerdotai/ModernBERT-base
|
21 |
+
|
22 |
+
This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the [train](https://huggingface.co/datasets/lightonai/ms-marco-en-bge) dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
|
23 |
+
|
24 |
+
## Model Details
|
25 |
+
|
26 |
+
### Model Description
|
27 |
+
- **Model Type:** PyLate model
|
28 |
+
- **Base model:** [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) <!-- at revision 5756c58a31a2478f9e62146021f48295a92c3da5 -->
|
29 |
+
- **Document Length:** 180 tokens
|
30 |
+
- **Query Length:** 32 tokens
|
31 |
+
- **Output Dimensionality:** 128 tokens
|
32 |
+
- **Similarity Function:** MaxSim
|
33 |
+
- **Training Dataset:**
|
34 |
+
- [train](https://huggingface.co/datasets/lightonai/ms-marco-en-bge)
|
35 |
+
- **Language:** en
|
36 |
+
<!-- - **License:** Unknown -->
|
37 |
+
|
38 |
+
### Model Sources
|
39 |
+
|
40 |
+
- **Documentation:** [PyLate Documentation](https://lightonai.github.io/pylate/)
|
41 |
+
- **Repository:** [PyLate on GitHub](https://github.com/lightonai/pylate)
|
42 |
+
- **Hugging Face:** [PyLate models on Hugging Face](https://huggingface.co/models?library=PyLate)
|
43 |
+
|
44 |
+
### Full Model Architecture
|
45 |
+
|
46 |
+
```
|
47 |
+
ColBERT(
|
48 |
+
(0): Transformer({'max_seq_length': 179, 'do_lower_case': False}) with Transformer model: ModernBertModel
|
49 |
+
(1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
|
50 |
+
)
|
51 |
+
```
|
52 |
+
|
53 |
+
## Usage
|
54 |
+
First install the PyLate library:
|
55 |
+
|
56 |
+
```bash
|
57 |
+
pip install -U pylate
|
58 |
+
```
|
59 |
+
|
60 |
+
### Retrieval
|
61 |
+
|
62 |
+
PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.
|
63 |
+
|
64 |
+
#### Indexing documents
|
65 |
+
|
66 |
+
First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:
|
67 |
+
|
68 |
+
```python
|
69 |
+
from pylate import indexes, models, retrieve
|
70 |
+
|
71 |
+
# Step 1: Load the ColBERT model
|
72 |
+
model = models.ColBERT(
|
73 |
+
model_name_or_path=pylate_model_id,
|
74 |
+
)
|
75 |
+
|
76 |
+
# Step 2: Initialize the Voyager index
|
77 |
+
index = indexes.Voyager(
|
78 |
+
index_folder="pylate-index",
|
79 |
+
index_name="index",
|
80 |
+
override=True, # This overwrites the existing index if any
|
81 |
+
)
|
82 |
+
|
83 |
+
# Step 3: Encode the documents
|
84 |
+
documents_ids = ["1", "2", "3"]
|
85 |
+
documents = ["document 1 text", "document 2 text", "document 3 text"]
|
86 |
+
|
87 |
+
documents_embeddings = model.encode(
|
88 |
+
documents,
|
89 |
+
batch_size=32,
|
90 |
+
is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries
|
91 |
+
show_progress_bar=True,
|
92 |
+
)
|
93 |
+
|
94 |
+
# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
|
95 |
+
index.add_documents(
|
96 |
+
documents_ids=documents_ids,
|
97 |
+
documents_embeddings=documents_embeddings,
|
98 |
+
)
|
99 |
+
```
|
100 |
+
|
101 |
+
Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:
|
102 |
+
|
103 |
+
```python
|
104 |
+
# To load an index, simply instantiate it with the correct folder/name and without overriding it
|
105 |
+
index = indexes.Voyager(
|
106 |
+
index_folder="pylate-index",
|
107 |
+
index_name="index",
|
108 |
+
)
|
109 |
+
```
|
110 |
+
|
111 |
+
#### Retrieving top-k documents for queries
|
112 |
+
|
113 |
+
Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries.
|
114 |
+
To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:
|
115 |
+
|
116 |
+
```python
|
117 |
+
# Step 1: Initialize the ColBERT retriever
|
118 |
+
retriever = retrieve.ColBERT(index=index)
|
119 |
+
|
120 |
+
# Step 2: Encode the queries
|
121 |
+
queries_embeddings = model.encode(
|
122 |
+
["query for document 3", "query for document 1"],
|
123 |
+
batch_size=32,
|
124 |
+
is_query=True, # # Ensure that it is set to False to indicate that these are queries
|
125 |
+
show_progress_bar=True,
|
126 |
+
)
|
127 |
+
|
128 |
+
# Step 3: Retrieve top-k documents
|
129 |
+
scores = retriever.retrieve(
|
130 |
+
queries_embeddings=queries_embeddings,
|
131 |
+
k=10, # Retrieve the top 10 matches for each query
|
132 |
+
)
|
133 |
+
```
|
134 |
+
|
135 |
+
### Reranking
|
136 |
+
If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:
|
137 |
+
|
138 |
+
```python
|
139 |
+
from pylate import rank, models
|
140 |
+
|
141 |
+
queries = [
|
142 |
+
"query A",
|
143 |
+
"query B",
|
144 |
+
]
|
145 |
+
|
146 |
+
documents = [
|
147 |
+
["document A", "document B"],
|
148 |
+
["document 1", "document C", "document B"],
|
149 |
+
]
|
150 |
+
|
151 |
+
documents_ids = [
|
152 |
+
[1, 2],
|
153 |
+
[1, 3, 2],
|
154 |
+
]
|
155 |
+
|
156 |
+
model = models.ColBERT(
|
157 |
+
model_name_or_path=pylate_model_id,
|
158 |
+
)
|
159 |
+
|
160 |
+
queries_embeddings = model.encode(
|
161 |
+
queries,
|
162 |
+
is_query=True,
|
163 |
+
)
|
164 |
+
|
165 |
+
documents_embeddings = model.encode(
|
166 |
+
documents,
|
167 |
+
is_query=False,
|
168 |
+
)
|
169 |
+
|
170 |
+
reranked_documents = rank.rerank(
|
171 |
+
documents_ids=documents_ids,
|
172 |
+
queries_embeddings=queries_embeddings,
|
173 |
+
documents_embeddings=documents_embeddings,
|
174 |
+
)
|
175 |
+
```
|
176 |
+
|
177 |
+
<!--
|
178 |
+
### Direct Usage (Transformers)
|
179 |
+
|
180 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
181 |
+
|
182 |
+
</details>
|
183 |
+
-->
|
184 |
+
|
185 |
+
<!--
|
186 |
+
### Downstream Usage (Sentence Transformers)
|
187 |
+
|
188 |
+
You can finetune this model on your own dataset.
|
189 |
+
|
190 |
+
<details><summary>Click to expand</summary>
|
191 |
+
|
192 |
+
</details>
|
193 |
+
-->
|
194 |
+
|
195 |
+
<!--
|
196 |
+
### Out-of-Scope Use
|
197 |
+
|
198 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
199 |
+
-->
|
200 |
+
|
201 |
+
<!--
|
202 |
+
## Bias, Risks and Limitations
|
203 |
+
|
204 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
205 |
+
-->
|
206 |
+
|
207 |
+
<!--
|
208 |
+
### Recommendations
|
209 |
+
|
210 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
211 |
+
-->
|
212 |
+
|
213 |
+
## Training Details
|
214 |
+
|
215 |
+
### Training Dataset
|
216 |
+
|
217 |
+
#### train
|
218 |
+
|
219 |
+
* Dataset: [train](https://huggingface.co/datasets/lightonai/ms-marco-en-bge) at [11e6ffa](https://huggingface.co/datasets/lightonai/ms-marco-en-bge/tree/11e6ffa1d22f461579f451eb31bdc964244cb61f)
|
220 |
+
* Size: 808,728 training samples
|
221 |
+
* Columns: <code>query_id</code>, <code>document_ids</code>, and <code>scores</code>
|
222 |
+
* Approximate statistics based on the first 1000 samples:
|
223 |
+
| | query_id | document_ids | scores |
|
224 |
+
|:--------|:--------------------------------------------------------------------------------|:------------------------------------|:------------------------------------|
|
225 |
+
| type | string | list | list |
|
226 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 5.59 tokens</li><li>max: 6 tokens</li></ul> | <ul><li>size: 32 elements</li></ul> | <ul><li>size: 32 elements</li></ul> |
|
227 |
+
* Samples:
|
228 |
+
| query_id | document_ids | scores |
|
229 |
+
|:--------------------|:--------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------|
|
230 |
+
| <code>121352</code> | <code>['2259784', '4923159', '40211', '1545154', '8527175', ...]</code> | <code>[0.2343463897705078, 0.639204204082489, 0.3806908428668976, 0.5623092651367188, 0.8051995635032654, ...]</code> |
|
231 |
+
| <code>634306</code> | <code>['7723525', '1874779', '379307', '2738583', '7599583', ...]</code> | <code>[0.7124203443527222, 0.7379189729690552, 0.5786551237106323, 0.6142299175262451, 0.6755089163780212, ...]</code> |
|
232 |
+
| <code>920825</code> | <code>['5976297', '2866112', '3560294', '3285659', '4706740', ...]</code> | <code>[0.6462352871894836, 0.7880821228027344, 0.791019856929779, 0.7709633111953735, 0.8284491300582886, ...]</code> |
|
233 |
+
* Loss: <code>pylate.losses.distillation.Distillation</code>
|
234 |
+
|
235 |
+
### Training Hyperparameters
|
236 |
+
#### Non-Default Hyperparameters
|
237 |
+
|
238 |
+
- `per_device_train_batch_size`: 4
|
239 |
+
- `gradient_accumulation_steps`: 4
|
240 |
+
- `learning_rate`: 8e-05
|
241 |
+
- `num_train_epochs`: 1
|
242 |
+
- `warmup_ratio`: 0.05
|
243 |
+
- `bf16`: True
|
244 |
+
- `tf32`: True
|
245 |
+
|
246 |
+
#### All Hyperparameters
|
247 |
+
<details><summary>Click to expand</summary>
|
248 |
+
|
249 |
+
- `overwrite_output_dir`: False
|
250 |
+
- `do_predict`: False
|
251 |
+
- `eval_strategy`: no
|
252 |
+
- `prediction_loss_only`: True
|
253 |
+
- `per_device_train_batch_size`: 4
|
254 |
+
- `per_device_eval_batch_size`: 8
|
255 |
+
- `per_gpu_train_batch_size`: None
|
256 |
+
- `per_gpu_eval_batch_size`: None
|
257 |
+
- `gradient_accumulation_steps`: 4
|
258 |
+
- `eval_accumulation_steps`: None
|
259 |
+
- `torch_empty_cache_steps`: None
|
260 |
+
- `learning_rate`: 8e-05
|
261 |
+
- `weight_decay`: 0.0
|
262 |
+
- `adam_beta1`: 0.9
|
263 |
+
- `adam_beta2`: 0.999
|
264 |
+
- `adam_epsilon`: 1e-08
|
265 |
+
- `max_grad_norm`: 1.0
|
266 |
+
- `num_train_epochs`: 1
|
267 |
+
- `max_steps`: -1
|
268 |
+
- `lr_scheduler_type`: linear
|
269 |
+
- `lr_scheduler_kwargs`: {}
|
270 |
+
- `warmup_ratio`: 0.05
|
271 |
+
- `warmup_steps`: 0
|
272 |
+
- `log_level`: passive
|
273 |
+
- `log_level_replica`: warning
|
274 |
+
- `log_on_each_node`: True
|
275 |
+
- `logging_nan_inf_filter`: True
|
276 |
+
- `save_safetensors`: True
|
277 |
+
- `save_on_each_node`: False
|
278 |
+
- `save_only_model`: False
|
279 |
+
- `restore_callback_states_from_checkpoint`: False
|
280 |
+
- `no_cuda`: False
|
281 |
+
- `use_cpu`: False
|
282 |
+
- `use_mps_device`: False
|
283 |
+
- `seed`: 42
|
284 |
+
- `data_seed`: None
|
285 |
+
- `jit_mode_eval`: False
|
286 |
+
- `use_ipex`: False
|
287 |
+
- `bf16`: True
|
288 |
+
- `fp16`: False
|
289 |
+
- `fp16_opt_level`: O1
|
290 |
+
- `half_precision_backend`: auto
|
291 |
+
- `bf16_full_eval`: False
|
292 |
+
- `fp16_full_eval`: False
|
293 |
+
- `tf32`: True
|
294 |
+
- `local_rank`: 0
|
295 |
+
- `ddp_backend`: None
|
296 |
+
- `tpu_num_cores`: None
|
297 |
+
- `tpu_metrics_debug`: False
|
298 |
+
- `debug`: []
|
299 |
+
- `dataloader_drop_last`: False
|
300 |
+
- `dataloader_num_workers`: 0
|
301 |
+
- `dataloader_prefetch_factor`: None
|
302 |
+
- `past_index`: -1
|
303 |
+
- `disable_tqdm`: False
|
304 |
+
- `remove_unused_columns`: True
|
305 |
+
- `label_names`: None
|
306 |
+
- `load_best_model_at_end`: False
|
307 |
+
- `ignore_data_skip`: False
|
308 |
+
- `fsdp`: []
|
309 |
+
- `fsdp_min_num_params`: 0
|
310 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
311 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
312 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
313 |
+
- `deepspeed`: None
|
314 |
+
- `label_smoothing_factor`: 0.0
|
315 |
+
- `optim`: adamw_torch
|
316 |
+
- `optim_args`: None
|
317 |
+
- `adafactor`: False
|
318 |
+
- `group_by_length`: False
|
319 |
+
- `length_column_name`: length
|
320 |
+
- `ddp_find_unused_parameters`: None
|
321 |
+
- `ddp_bucket_cap_mb`: None
|
322 |
+
- `ddp_broadcast_buffers`: False
|
323 |
+
- `dataloader_pin_memory`: True
|
324 |
+
- `dataloader_persistent_workers`: False
|
325 |
+
- `skip_memory_metrics`: True
|
326 |
+
- `use_legacy_prediction_loop`: False
|
327 |
+
- `push_to_hub`: False
|
328 |
+
- `resume_from_checkpoint`: None
|
329 |
+
- `hub_model_id`: None
|
330 |
+
- `hub_strategy`: every_save
|
331 |
+
- `hub_private_repo`: None
|
332 |
+
- `hub_always_push`: False
|
333 |
+
- `gradient_checkpointing`: False
|
334 |
+
- `gradient_checkpointing_kwargs`: None
|
335 |
+
- `include_inputs_for_metrics`: False
|
336 |
+
- `include_for_metrics`: []
|
337 |
+
- `eval_do_concat_batches`: True
|
338 |
+
- `fp16_backend`: auto
|
339 |
+
- `push_to_hub_model_id`: None
|
340 |
+
- `push_to_hub_organization`: None
|
341 |
+
- `mp_parameters`:
|
342 |
+
- `auto_find_batch_size`: False
|
343 |
+
- `full_determinism`: False
|
344 |
+
- `torchdynamo`: None
|
345 |
+
- `ray_scope`: last
|
346 |
+
- `ddp_timeout`: 1800
|
347 |
+
- `torch_compile`: False
|
348 |
+
- `torch_compile_backend`: None
|
349 |
+
- `torch_compile_mode`: None
|
350 |
+
- `dispatch_batches`: None
|
351 |
+
- `split_batches`: None
|
352 |
+
- `include_tokens_per_second`: False
|
353 |
+
- `include_num_input_tokens_seen`: False
|
354 |
+
- `neftune_noise_alpha`: None
|
355 |
+
- `optim_target_modules`: None
|
356 |
+
- `batch_eval_metrics`: False
|
357 |
+
- `eval_on_start`: False
|
358 |
+
- `use_liger_kernel`: False
|
359 |
+
- `eval_use_gather_object`: False
|
360 |
+
- `average_tokens_across_devices`: False
|
361 |
+
- `prompts`: None
|
362 |
+
- `batch_sampler`: batch_sampler
|
363 |
+
- `multi_dataset_batch_sampler`: proportional
|
364 |
+
|
365 |
+
</details>
|
366 |
+
|
367 |
+
### Training Logs
|
368 |
+
<details><summary>Click to expand</summary>
|
369 |
+
|
370 |
+
| Epoch | Step | Training Loss |
|
371 |
+
|:------:|:-----:|:-------------:|
|
372 |
+
| 0.0020 | 100 | 0.0524 |
|
373 |
+
| 0.0040 | 200 | 0.0482 |
|
374 |
+
| 0.0059 | 300 | 0.0464 |
|
375 |
+
| 0.0079 | 400 | 0.043 |
|
376 |
+
| 0.0099 | 500 | 0.0387 |
|
377 |
+
| 0.0119 | 600 | 0.0383 |
|
378 |
+
| 0.0138 | 700 | 0.0345 |
|
379 |
+
| 0.0158 | 800 | 0.0307 |
|
380 |
+
| 0.0178 | 900 | 0.0294 |
|
381 |
+
| 0.0198 | 1000 | 0.0275 |
|
382 |
+
| 0.0218 | 1100 | 0.0271 |
|
383 |
+
| 0.0237 | 1200 | 0.0264 |
|
384 |
+
| 0.0257 | 1300 | 0.0258 |
|
385 |
+
| 0.0277 | 1400 | 0.0246 |
|
386 |
+
| 0.0297 | 1500 | 0.0239 |
|
387 |
+
| 0.0317 | 1600 | 0.023 |
|
388 |
+
| 0.0336 | 1700 | 0.0216 |
|
389 |
+
| 0.0356 | 1800 | 0.0282 |
|
390 |
+
| 0.0376 | 1900 | 0.0211 |
|
391 |
+
| 0.0396 | 2000 | 0.0205 |
|
392 |
+
| 0.0415 | 2100 | 0.0197 |
|
393 |
+
| 0.0435 | 2200 | 0.0187 |
|
394 |
+
| 0.0455 | 2300 | 0.0184 |
|
395 |
+
| 0.0475 | 2400 | 0.0177 |
|
396 |
+
| 0.0495 | 2500 | 0.0179 |
|
397 |
+
| 0.0514 | 2600 | 0.0173 |
|
398 |
+
| 0.0534 | 2700 | 0.0169 |
|
399 |
+
| 0.0554 | 2800 | 0.0163 |
|
400 |
+
| 0.0574 | 2900 | 0.016 |
|
401 |
+
| 0.0594 | 3000 | 0.016 |
|
402 |
+
| 0.0613 | 3100 | 0.0147 |
|
403 |
+
| 0.0633 | 3200 | 0.0148 |
|
404 |
+
| 0.0653 | 3300 | 0.0155 |
|
405 |
+
| 0.0673 | 3400 | 0.0149 |
|
406 |
+
| 0.0692 | 3500 | 0.0149 |
|
407 |
+
| 0.0712 | 3600 | 0.0141 |
|
408 |
+
| 0.0732 | 3700 | 0.0145 |
|
409 |
+
| 0.0752 | 3800 | 0.0142 |
|
410 |
+
| 0.0772 | 3900 | 0.0143 |
|
411 |
+
| 0.0791 | 4000 | 0.0137 |
|
412 |
+
| 0.0811 | 4100 | 0.0134 |
|
413 |
+
| 0.0831 | 4200 | 0.0129 |
|
414 |
+
| 0.0851 | 4300 | 0.0133 |
|
415 |
+
| 0.0871 | 4400 | 0.0135 |
|
416 |
+
| 0.0890 | 4500 | 0.0128 |
|
417 |
+
| 0.0910 | 4600 | 0.0126 |
|
418 |
+
| 0.0930 | 4700 | 0.0126 |
|
419 |
+
| 0.0950 | 4800 | 0.0129 |
|
420 |
+
| 0.0969 | 4900 | 0.0127 |
|
421 |
+
| 0.0989 | 5000 | 0.0127 |
|
422 |
+
| 0.1009 | 5100 | 0.0125 |
|
423 |
+
| 0.1029 | 5200 | 0.0119 |
|
424 |
+
| 0.1049 | 5300 | 0.0124 |
|
425 |
+
| 0.1068 | 5400 | 0.012 |
|
426 |
+
| 0.1088 | 5500 | 0.013 |
|
427 |
+
| 0.1108 | 5600 | 0.0119 |
|
428 |
+
| 0.1128 | 5700 | 0.0118 |
|
429 |
+
| 0.1147 | 5800 | 0.0121 |
|
430 |
+
| 0.1167 | 5900 | 0.0119 |
|
431 |
+
| 0.1187 | 6000 | 0.0116 |
|
432 |
+
| 0.1207 | 6100 | 0.0112 |
|
433 |
+
| 0.1227 | 6200 | 0.0116 |
|
434 |
+
| 0.1246 | 6300 | 0.0115 |
|
435 |
+
| 0.1266 | 6400 | 0.0119 |
|
436 |
+
| 0.1286 | 6500 | 0.0115 |
|
437 |
+
| 0.1306 | 6600 | 0.0109 |
|
438 |
+
| 0.1326 | 6700 | 0.0114 |
|
439 |
+
| 0.1345 | 6800 | 0.0114 |
|
440 |
+
| 0.1365 | 6900 | 0.0109 |
|
441 |
+
| 0.1385 | 7000 | 0.011 |
|
442 |
+
| 0.1405 | 7100 | 0.0111 |
|
443 |
+
| 0.1424 | 7200 | 0.0109 |
|
444 |
+
| 0.1444 | 7300 | 0.0108 |
|
445 |
+
| 0.1464 | 7400 | 0.0112 |
|
446 |
+
| 0.1484 | 7500 | 0.0106 |
|
447 |
+
| 0.1504 | 7600 | 0.011 |
|
448 |
+
| 0.1523 | 7700 | 0.0106 |
|
449 |
+
| 0.1543 | 7800 | 0.0107 |
|
450 |
+
| 0.1563 | 7900 | 0.0108 |
|
451 |
+
| 0.1583 | 8000 | 0.0106 |
|
452 |
+
| 0.1603 | 8100 | 0.0107 |
|
453 |
+
| 0.1622 | 8200 | 0.0108 |
|
454 |
+
| 0.1642 | 8300 | 0.0103 |
|
455 |
+
| 0.1662 | 8400 | 0.0107 |
|
456 |
+
| 0.1682 | 8500 | 0.0104 |
|
457 |
+
| 0.1701 | 8600 | 0.011 |
|
458 |
+
| 0.1721 | 8700 | 0.0105 |
|
459 |
+
| 0.1741 | 8800 | 0.0105 |
|
460 |
+
| 0.1761 | 8900 | 0.01 |
|
461 |
+
| 0.1781 | 9000 | 0.0106 |
|
462 |
+
| 0.1800 | 9100 | 0.0105 |
|
463 |
+
| 0.1820 | 9200 | 0.0104 |
|
464 |
+
| 0.1840 | 9300 | 0.0104 |
|
465 |
+
| 0.1860 | 9400 | 0.0107 |
|
466 |
+
| 0.1879 | 9500 | 0.0102 |
|
467 |
+
| 0.1899 | 9600 | 0.0103 |
|
468 |
+
| 0.1919 | 9700 | 0.0105 |
|
469 |
+
| 0.1939 | 9800 | 0.01 |
|
470 |
+
| 0.1959 | 9900 | 0.0098 |
|
471 |
+
| 0.1978 | 10000 | 0.0099 |
|
472 |
+
| 0.1998 | 10100 | 0.0099 |
|
473 |
+
| 0.2018 | 10200 | 0.0099 |
|
474 |
+
| 0.2038 | 10300 | 0.0098 |
|
475 |
+
| 0.2058 | 10400 | 0.01 |
|
476 |
+
| 0.2077 | 10500 | 0.0101 |
|
477 |
+
| 0.2097 | 10600 | 0.0098 |
|
478 |
+
| 0.2117 | 10700 | 0.0101 |
|
479 |
+
| 0.2137 | 10800 | 0.0098 |
|
480 |
+
| 0.2156 | 10900 | 0.0101 |
|
481 |
+
| 0.2176 | 11000 | 0.01 |
|
482 |
+
| 0.2196 | 11100 | 0.01 |
|
483 |
+
| 0.2216 | 11200 | 0.0096 |
|
484 |
+
| 0.2236 | 11300 | 0.0096 |
|
485 |
+
| 0.2255 | 11400 | 0.0096 |
|
486 |
+
| 0.2275 | 11500 | 0.0098 |
|
487 |
+
| 0.2295 | 11600 | 0.0099 |
|
488 |
+
| 0.2315 | 11700 | 0.0094 |
|
489 |
+
| 0.2335 | 11800 | 0.0096 |
|
490 |
+
| 0.2354 | 11900 | 0.0094 |
|
491 |
+
| 0.2374 | 12000 | 0.0098 |
|
492 |
+
| 0.2394 | 12100 | 0.0095 |
|
493 |
+
| 0.2414 | 12200 | 0.0095 |
|
494 |
+
| 0.2433 | 12300 | 0.0098 |
|
495 |
+
| 0.2453 | 12400 | 0.0097 |
|
496 |
+
| 0.2473 | 12500 | 0.0094 |
|
497 |
+
| 0.2493 | 12600 | 0.0093 |
|
498 |
+
| 0.2513 | 12700 | 0.0093 |
|
499 |
+
| 0.2532 | 12800 | 0.0092 |
|
500 |
+
| 0.2552 | 12900 | 0.0094 |
|
501 |
+
| 0.2572 | 13000 | 0.0095 |
|
502 |
+
| 0.2592 | 13100 | 0.0093 |
|
503 |
+
| 0.2612 | 13200 | 0.009 |
|
504 |
+
| 0.2631 | 13300 | 0.0087 |
|
505 |
+
| 0.2651 | 13400 | 0.0089 |
|
506 |
+
| 0.2671 | 13500 | 0.009 |
|
507 |
+
| 0.2691 | 13600 | 0.0091 |
|
508 |
+
| 0.2710 | 13700 | 0.0092 |
|
509 |
+
| 0.2730 | 13800 | 0.0089 |
|
510 |
+
| 0.2750 | 13900 | 0.0091 |
|
511 |
+
| 0.2770 | 14000 | 0.0092 |
|
512 |
+
| 0.2790 | 14100 | 0.0088 |
|
513 |
+
| 0.2809 | 14200 | 0.009 |
|
514 |
+
| 0.2829 | 14300 | 0.0091 |
|
515 |
+
| 0.2849 | 14400 | 0.0086 |
|
516 |
+
| 0.2869 | 14500 | 0.009 |
|
517 |
+
| 0.2888 | 14600 | 0.0088 |
|
518 |
+
| 0.2908 | 14700 | 0.0092 |
|
519 |
+
| 0.2928 | 14800 | 0.009 |
|
520 |
+
| 0.2948 | 14900 | 0.0088 |
|
521 |
+
| 0.2968 | 15000 | 0.0087 |
|
522 |
+
| 0.2987 | 15100 | 0.0085 |
|
523 |
+
| 0.3007 | 15200 | 0.009 |
|
524 |
+
| 0.3027 | 15300 | 0.0088 |
|
525 |
+
| 0.3047 | 15400 | 0.0086 |
|
526 |
+
| 0.3067 | 15500 | 0.0087 |
|
527 |
+
| 0.3086 | 15600 | 0.0088 |
|
528 |
+
| 0.3106 | 15700 | 0.0085 |
|
529 |
+
| 0.3126 | 15800 | 0.0088 |
|
530 |
+
| 0.3146 | 15900 | 0.0085 |
|
531 |
+
| 0.3165 | 16000 | 0.0086 |
|
532 |
+
| 0.3185 | 16100 | 0.0086 |
|
533 |
+
| 0.3205 | 16200 | 0.0087 |
|
534 |
+
| 0.3225 | 16300 | 0.0088 |
|
535 |
+
| 0.3245 | 16400 | 0.0087 |
|
536 |
+
| 0.3264 | 16500 | 0.0087 |
|
537 |
+
| 0.3284 | 16600 | 0.0086 |
|
538 |
+
| 0.3304 | 16700 | 0.0087 |
|
539 |
+
| 0.3324 | 16800 | 0.0092 |
|
540 |
+
| 0.3344 | 16900 | 0.0085 |
|
541 |
+
| 0.3363 | 17000 | 0.0088 |
|
542 |
+
| 0.3383 | 17100 | 0.0084 |
|
543 |
+
| 0.3403 | 17200 | 0.0088 |
|
544 |
+
| 0.3423 | 17300 | 0.0083 |
|
545 |
+
| 0.3442 | 17400 | 0.0085 |
|
546 |
+
| 0.3462 | 17500 | 0.0083 |
|
547 |
+
| 0.3482 | 17600 | 0.0084 |
|
548 |
+
| 0.3502 | 17700 | 0.0084 |
|
549 |
+
| 0.3522 | 17800 | 0.0083 |
|
550 |
+
| 0.3541 | 17900 | 0.0087 |
|
551 |
+
| 0.3561 | 18000 | 0.0083 |
|
552 |
+
| 0.3581 | 18100 | 0.0085 |
|
553 |
+
| 0.3601 | 18200 | 0.0082 |
|
554 |
+
| 0.3621 | 18300 | 0.0079 |
|
555 |
+
| 0.3640 | 18400 | 0.0085 |
|
556 |
+
| 0.3660 | 18500 | 0.0084 |
|
557 |
+
| 0.3680 | 18600 | 0.0082 |
|
558 |
+
| 0.3700 | 18700 | 0.0083 |
|
559 |
+
| 0.3719 | 18800 | 0.0082 |
|
560 |
+
| 0.3739 | 18900 | 0.0082 |
|
561 |
+
| 0.3759 | 19000 | 0.0083 |
|
562 |
+
| 0.3779 | 19100 | 0.0081 |
|
563 |
+
| 0.3799 | 19200 | 0.0083 |
|
564 |
+
| 0.3818 | 19300 | 0.0079 |
|
565 |
+
| 0.3838 | 19400 | 0.0083 |
|
566 |
+
| 0.3858 | 19500 | 0.0082 |
|
567 |
+
| 0.3878 | 19600 | 0.0084 |
|
568 |
+
| 0.3897 | 19700 | 0.0084 |
|
569 |
+
| 0.3917 | 19800 | 0.008 |
|
570 |
+
| 0.3937 | 19900 | 0.0081 |
|
571 |
+
| 0.3957 | 20000 | 0.0083 |
|
572 |
+
| 0.3977 | 20100 | 0.0082 |
|
573 |
+
| 0.3996 | 20200 | 0.0078 |
|
574 |
+
| 0.4016 | 20300 | 0.0079 |
|
575 |
+
| 0.4036 | 20400 | 0.0081 |
|
576 |
+
| 0.4056 | 20500 | 0.0085 |
|
577 |
+
| 0.4076 | 20600 | 0.0082 |
|
578 |
+
| 0.4095 | 20700 | 0.008 |
|
579 |
+
| 0.4115 | 20800 | 0.0079 |
|
580 |
+
| 0.4135 | 20900 | 0.0081 |
|
581 |
+
| 0.4155 | 21000 | 0.008 |
|
582 |
+
| 0.4174 | 21100 | 0.0079 |
|
583 |
+
| 0.4194 | 21200 | 0.0077 |
|
584 |
+
| 0.4214 | 21300 | 0.0078 |
|
585 |
+
| 0.4234 | 21400 | 0.0082 |
|
586 |
+
| 0.4254 | 21500 | 0.008 |
|
587 |
+
| 0.4273 | 21600 | 0.0076 |
|
588 |
+
| 0.4293 | 21700 | 0.0075 |
|
589 |
+
| 0.4313 | 21800 | 0.0078 |
|
590 |
+
| 0.4333 | 21900 | 0.0081 |
|
591 |
+
| 0.4353 | 22000 | 0.0077 |
|
592 |
+
| 0.4372 | 22100 | 0.0079 |
|
593 |
+
| 0.4392 | 22200 | 0.0078 |
|
594 |
+
| 0.4412 | 22300 | 0.0078 |
|
595 |
+
| 0.4432 | 22400 | 0.0077 |
|
596 |
+
| 0.4451 | 22500 | 0.0078 |
|
597 |
+
| 0.4471 | 22600 | 0.0079 |
|
598 |
+
| 0.4491 | 22700 | 0.0078 |
|
599 |
+
| 0.4511 | 22800 | 0.0079 |
|
600 |
+
| 0.4531 | 22900 | 0.0075 |
|
601 |
+
| 0.4550 | 23000 | 0.0077 |
|
602 |
+
| 0.4570 | 23100 | 0.0076 |
|
603 |
+
| 0.4590 | 23200 | 0.0078 |
|
604 |
+
| 0.4610 | 23300 | 0.0075 |
|
605 |
+
| 0.4629 | 23400 | 0.0075 |
|
606 |
+
| 0.4649 | 23500 | 0.0078 |
|
607 |
+
| 0.4669 | 23600 | 0.0075 |
|
608 |
+
| 0.4689 | 23700 | 0.0076 |
|
609 |
+
| 0.4709 | 23800 | 0.0075 |
|
610 |
+
| 0.4728 | 23900 | 0.0075 |
|
611 |
+
| 0.4748 | 24000 | 0.0075 |
|
612 |
+
| 0.4768 | 24100 | 0.0076 |
|
613 |
+
| 0.4788 | 24200 | 0.0079 |
|
614 |
+
| 0.4808 | 24300 | 0.0076 |
|
615 |
+
| 0.4827 | 24400 | 0.0077 |
|
616 |
+
| 0.4847 | 24500 | 0.0077 |
|
617 |
+
| 0.4867 | 24600 | 0.0073 |
|
618 |
+
| 0.4887 | 24700 | 0.0077 |
|
619 |
+
| 0.4906 | 24800 | 0.0076 |
|
620 |
+
| 0.4926 | 24900 | 0.0075 |
|
621 |
+
| 0.4946 | 25000 | 0.0076 |
|
622 |
+
| 0.4966 | 25100 | 0.0078 |
|
623 |
+
| 0.4986 | 25200 | 0.0077 |
|
624 |
+
| 0.5005 | 25300 | 0.0076 |
|
625 |
+
| 0.5025 | 25400 | 0.0076 |
|
626 |
+
| 0.5045 | 25500 | 0.0076 |
|
627 |
+
| 0.5065 | 25600 | 0.0073 |
|
628 |
+
| 0.5085 | 25700 | 0.0075 |
|
629 |
+
| 0.5104 | 25800 | 0.0072 |
|
630 |
+
| 0.5124 | 25900 | 0.0074 |
|
631 |
+
| 0.5144 | 26000 | 0.0075 |
|
632 |
+
| 0.5164 | 26100 | 0.0075 |
|
633 |
+
| 0.5183 | 26200 | 0.0072 |
|
634 |
+
| 0.5203 | 26300 | 0.0073 |
|
635 |
+
| 0.5223 | 26400 | 0.0073 |
|
636 |
+
| 0.5243 | 26500 | 0.0073 |
|
637 |
+
| 0.5263 | 26600 | 0.0076 |
|
638 |
+
| 0.5282 | 26700 | 0.0075 |
|
639 |
+
| 0.5302 | 26800 | 0.0075 |
|
640 |
+
| 0.5322 | 26900 | 0.0071 |
|
641 |
+
| 0.5342 | 27000 | 0.0074 |
|
642 |
+
| 0.5362 | 27100 | 0.0073 |
|
643 |
+
| 0.5381 | 27200 | 0.0072 |
|
644 |
+
| 0.5401 | 27300 | 0.0071 |
|
645 |
+
| 0.5421 | 27400 | 0.0073 |
|
646 |
+
| 0.5441 | 27500 | 0.0072 |
|
647 |
+
| 0.5460 | 27600 | 0.0076 |
|
648 |
+
| 0.5480 | 27700 | 0.0072 |
|
649 |
+
| 0.5500 | 27800 | 0.0074 |
|
650 |
+
| 0.5520 | 27900 | 0.0072 |
|
651 |
+
| 0.5540 | 28000 | 0.0072 |
|
652 |
+
| 0.5559 | 28100 | 0.0071 |
|
653 |
+
| 0.5579 | 28200 | 0.0069 |
|
654 |
+
| 0.5599 | 28300 | 0.0071 |
|
655 |
+
| 0.5619 | 28400 | 0.0075 |
|
656 |
+
| 0.5638 | 28500 | 0.0074 |
|
657 |
+
| 0.5658 | 28600 | 0.0072 |
|
658 |
+
| 0.5678 | 28700 | 0.0074 |
|
659 |
+
| 0.5698 | 28800 | 0.0072 |
|
660 |
+
| 0.5718 | 28900 | 0.0072 |
|
661 |
+
| 0.5737 | 29000 | 0.0073 |
|
662 |
+
| 0.5757 | 29100 | 0.0072 |
|
663 |
+
| 0.5777 | 29200 | 0.0069 |
|
664 |
+
| 0.5797 | 29300 | 0.0069 |
|
665 |
+
| 0.5817 | 29400 | 0.007 |
|
666 |
+
| 0.5836 | 29500 | 0.0071 |
|
667 |
+
| 0.5856 | 29600 | 0.007 |
|
668 |
+
| 0.5876 | 29700 | 0.0069 |
|
669 |
+
| 0.5896 | 29800 | 0.0072 |
|
670 |
+
| 0.5915 | 29900 | 0.007 |
|
671 |
+
| 0.5935 | 30000 | 0.007 |
|
672 |
+
| 0.5955 | 30100 | 0.007 |
|
673 |
+
| 0.5975 | 30200 | 0.0069 |
|
674 |
+
| 0.5995 | 30300 | 0.0068 |
|
675 |
+
| 0.6014 | 30400 | 0.0071 |
|
676 |
+
| 0.6034 | 30500 | 0.007 |
|
677 |
+
| 0.6054 | 30600 | 0.0071 |
|
678 |
+
| 0.6074 | 30700 | 0.007 |
|
679 |
+
| 0.6094 | 30800 | 0.0069 |
|
680 |
+
| 0.6113 | 30900 | 0.007 |
|
681 |
+
| 0.6133 | 31000 | 0.0071 |
|
682 |
+
| 0.6153 | 31100 | 0.0069 |
|
683 |
+
| 0.6173 | 31200 | 0.007 |
|
684 |
+
| 0.6192 | 31300 | 0.0068 |
|
685 |
+
| 0.6212 | 31400 | 0.0069 |
|
686 |
+
| 0.6232 | 31500 | 0.0068 |
|
687 |
+
| 0.6252 | 31600 | 0.0068 |
|
688 |
+
| 0.6272 | 31700 | 0.007 |
|
689 |
+
| 0.6291 | 31800 | 0.0068 |
|
690 |
+
| 0.6311 | 31900 | 0.0069 |
|
691 |
+
| 0.6331 | 32000 | 0.0068 |
|
692 |
+
| 0.6351 | 32100 | 0.0069 |
|
693 |
+
| 0.6370 | 32200 | 0.0066 |
|
694 |
+
| 0.6390 | 32300 | 0.0068 |
|
695 |
+
| 0.6410 | 32400 | 0.0067 |
|
696 |
+
| 0.6430 | 32500 | 0.0068 |
|
697 |
+
| 0.6450 | 32600 | 0.0069 |
|
698 |
+
| 0.6469 | 32700 | 0.0068 |
|
699 |
+
| 0.6489 | 32800 | 0.0065 |
|
700 |
+
| 0.6509 | 32900 | 0.0068 |
|
701 |
+
| 0.6529 | 33000 | 0.0067 |
|
702 |
+
| 0.6549 | 33100 | 0.0066 |
|
703 |
+
| 0.6568 | 33200 | 0.0069 |
|
704 |
+
| 0.6588 | 33300 | 0.0067 |
|
705 |
+
| 0.6608 | 33400 | 0.0067 |
|
706 |
+
| 0.6628 | 33500 | 0.0068 |
|
707 |
+
| 0.6647 | 33600 | 0.0066 |
|
708 |
+
| 0.6667 | 33700 | 0.0069 |
|
709 |
+
| 0.6687 | 33800 | 0.0069 |
|
710 |
+
| 0.6707 | 33900 | 0.0064 |
|
711 |
+
| 0.6727 | 34000 | 0.0065 |
|
712 |
+
| 0.6746 | 34100 | 0.0067 |
|
713 |
+
| 0.6766 | 34200 | 0.0063 |
|
714 |
+
| 0.6786 | 34300 | 0.0067 |
|
715 |
+
| 0.6806 | 34400 | 0.0066 |
|
716 |
+
| 0.6826 | 34500 | 0.0065 |
|
717 |
+
| 0.6845 | 34600 | 0.0064 |
|
718 |
+
| 0.6865 | 34700 | 0.0066 |
|
719 |
+
| 0.6885 | 34800 | 0.0065 |
|
720 |
+
| 0.6905 | 34900 | 0.0064 |
|
721 |
+
| 0.6924 | 35000 | 0.0066 |
|
722 |
+
| 0.6944 | 35100 | 0.0064 |
|
723 |
+
| 0.6964 | 35200 | 0.0064 |
|
724 |
+
| 0.6984 | 35300 | 0.0066 |
|
725 |
+
| 0.7004 | 35400 | 0.0065 |
|
726 |
+
| 0.7023 | 35500 | 0.0067 |
|
727 |
+
| 0.7043 | 35600 | 0.0065 |
|
728 |
+
| 0.7063 | 35700 | 0.0064 |
|
729 |
+
| 0.7083 | 35800 | 0.0066 |
|
730 |
+
| 0.7103 | 35900 | 0.0065 |
|
731 |
+
| 0.7122 | 36000 | 0.0067 |
|
732 |
+
| 0.7142 | 36100 | 0.0069 |
|
733 |
+
| 0.7162 | 36200 | 0.0065 |
|
734 |
+
| 0.7182 | 36300 | 0.0064 |
|
735 |
+
| 0.7201 | 36400 | 0.0064 |
|
736 |
+
| 0.7221 | 36500 | 0.0066 |
|
737 |
+
| 0.7241 | 36600 | 0.0065 |
|
738 |
+
| 0.7261 | 36700 | 0.0062 |
|
739 |
+
| 0.7281 | 36800 | 0.0068 |
|
740 |
+
| 0.7300 | 36900 | 0.0064 |
|
741 |
+
| 0.7320 | 37000 | 0.0067 |
|
742 |
+
| 0.7340 | 37100 | 0.0063 |
|
743 |
+
| 0.7360 | 37200 | 0.0063 |
|
744 |
+
| 0.7379 | 37300 | 0.0064 |
|
745 |
+
| 0.7399 | 37400 | 0.0066 |
|
746 |
+
| 0.7419 | 37500 | 0.0065 |
|
747 |
+
| 0.7439 | 37600 | 0.0064 |
|
748 |
+
| 0.7459 | 37700 | 0.0065 |
|
749 |
+
| 0.7478 | 37800 | 0.0064 |
|
750 |
+
| 0.7498 | 37900 | 0.0063 |
|
751 |
+
| 0.7518 | 38000 | 0.0062 |
|
752 |
+
| 0.7538 | 38100 | 0.0064 |
|
753 |
+
| 0.7558 | 38200 | 0.0062 |
|
754 |
+
| 0.7577 | 38300 | 0.0064 |
|
755 |
+
| 0.7597 | 38400 | 0.0063 |
|
756 |
+
| 0.7617 | 38500 | 0.0063 |
|
757 |
+
| 0.7637 | 38600 | 0.0065 |
|
758 |
+
| 0.7656 | 38700 | 0.0063 |
|
759 |
+
| 0.7676 | 38800 | 0.0064 |
|
760 |
+
| 0.7696 | 38900 | 0.0062 |
|
761 |
+
| 0.7716 | 39000 | 0.0062 |
|
762 |
+
| 0.7736 | 39100 | 0.0062 |
|
763 |
+
| 0.7755 | 39200 | 0.0063 |
|
764 |
+
| 0.7775 | 39300 | 0.0065 |
|
765 |
+
| 0.7795 | 39400 | 0.0061 |
|
766 |
+
| 0.7815 | 39500 | 0.0062 |
|
767 |
+
| 0.7835 | 39600 | 0.0063 |
|
768 |
+
| 0.7854 | 39700 | 0.0062 |
|
769 |
+
| 0.7874 | 39800 | 0.0062 |
|
770 |
+
| 0.7894 | 39900 | 0.0063 |
|
771 |
+
| 0.7914 | 40000 | 0.0059 |
|
772 |
+
| 0.7933 | 40100 | 0.0063 |
|
773 |
+
| 0.7953 | 40200 | 0.0064 |
|
774 |
+
| 0.7973 | 40300 | 0.006 |
|
775 |
+
| 0.7993 | 40400 | 0.0063 |
|
776 |
+
| 0.8013 | 40500 | 0.0061 |
|
777 |
+
| 0.8032 | 40600 | 0.0061 |
|
778 |
+
| 0.8052 | 40700 | 0.0062 |
|
779 |
+
| 0.8072 | 40800 | 0.0062 |
|
780 |
+
| 0.8092 | 40900 | 0.006 |
|
781 |
+
| 0.8112 | 41000 | 0.0061 |
|
782 |
+
| 0.8131 | 41100 | 0.0063 |
|
783 |
+
| 0.8151 | 41200 | 0.0059 |
|
784 |
+
| 0.8171 | 41300 | 0.0062 |
|
785 |
+
| 0.8191 | 41400 | 0.0062 |
|
786 |
+
| 0.8210 | 41500 | 0.0062 |
|
787 |
+
| 0.8230 | 41600 | 0.0062 |
|
788 |
+
| 0.8250 | 41700 | 0.0061 |
|
789 |
+
| 0.8270 | 41800 | 0.0061 |
|
790 |
+
| 0.8290 | 41900 | 0.0061 |
|
791 |
+
| 0.8309 | 42000 | 0.0063 |
|
792 |
+
| 0.8329 | 42100 | 0.0064 |
|
793 |
+
| 0.8349 | 42200 | 0.0063 |
|
794 |
+
| 0.8369 | 42300 | 0.0063 |
|
795 |
+
| 0.8388 | 42400 | 0.0061 |
|
796 |
+
| 0.8408 | 42500 | 0.0062 |
|
797 |
+
| 0.8428 | 42600 | 0.0062 |
|
798 |
+
| 0.8448 | 42700 | 0.0061 |
|
799 |
+
| 0.8468 | 42800 | 0.0059 |
|
800 |
+
| 0.8487 | 42900 | 0.006 |
|
801 |
+
| 0.8507 | 43000 | 0.0061 |
|
802 |
+
| 0.8527 | 43100 | 0.0062 |
|
803 |
+
| 0.8547 | 43200 | 0.0058 |
|
804 |
+
| 0.8567 | 43300 | 0.0065 |
|
805 |
+
| 0.8586 | 43400 | 0.0064 |
|
806 |
+
| 0.8606 | 43500 | 0.006 |
|
807 |
+
| 0.8626 | 43600 | 0.0061 |
|
808 |
+
| 0.8646 | 43700 | 0.0059 |
|
809 |
+
| 0.8665 | 43800 | 0.0063 |
|
810 |
+
| 0.8685 | 43900 | 0.0061 |
|
811 |
+
| 0.8705 | 44000 | 0.006 |
|
812 |
+
| 0.8725 | 44100 | 0.0061 |
|
813 |
+
| 0.8745 | 44200 | 0.0061 |
|
814 |
+
| 0.8764 | 44300 | 0.0059 |
|
815 |
+
| 0.8784 | 44400 | 0.006 |
|
816 |
+
| 0.8804 | 44500 | 0.006 |
|
817 |
+
| 0.8824 | 44600 | 0.0059 |
|
818 |
+
| 0.8844 | 44700 | 0.0062 |
|
819 |
+
| 0.8863 | 44800 | 0.006 |
|
820 |
+
| 0.8883 | 44900 | 0.006 |
|
821 |
+
| 0.8903 | 45000 | 0.0058 |
|
822 |
+
| 0.8923 | 45100 | 0.006 |
|
823 |
+
| 0.8942 | 45200 | 0.0061 |
|
824 |
+
| 0.8962 | 45300 | 0.006 |
|
825 |
+
| 0.8982 | 45400 | 0.0059 |
|
826 |
+
| 0.9002 | 45500 | 0.0059 |
|
827 |
+
| 0.9022 | 45600 | 0.006 |
|
828 |
+
| 0.9041 | 45700 | 0.0062 |
|
829 |
+
| 0.9061 | 45800 | 0.0056 |
|
830 |
+
| 0.9081 | 45900 | 0.0057 |
|
831 |
+
| 0.9101 | 46000 | 0.006 |
|
832 |
+
| 0.9120 | 46100 | 0.0059 |
|
833 |
+
| 0.9140 | 46200 | 0.006 |
|
834 |
+
| 0.9160 | 46300 | 0.0059 |
|
835 |
+
| 0.9180 | 46400 | 0.0062 |
|
836 |
+
| 0.9200 | 46500 | 0.0059 |
|
837 |
+
| 0.9219 | 46600 | 0.0059 |
|
838 |
+
| 0.9239 | 46700 | 0.006 |
|
839 |
+
| 0.9259 | 46800 | 0.0059 |
|
840 |
+
| 0.9279 | 46900 | 0.0058 |
|
841 |
+
| 0.9299 | 47000 | 0.0057 |
|
842 |
+
| 0.9318 | 47100 | 0.0058 |
|
843 |
+
| 0.9338 | 47200 | 0.0058 |
|
844 |
+
| 0.9358 | 47300 | 0.0059 |
|
845 |
+
| 0.9378 | 47400 | 0.0059 |
|
846 |
+
| 0.9397 | 47500 | 0.0058 |
|
847 |
+
| 0.9417 | 47600 | 0.006 |
|
848 |
+
| 0.9437 | 47700 | 0.0058 |
|
849 |
+
| 0.9457 | 47800 | 0.006 |
|
850 |
+
| 0.9477 | 47900 | 0.0059 |
|
851 |
+
| 0.9496 | 48000 | 0.0058 |
|
852 |
+
| 0.9516 | 48100 | 0.0057 |
|
853 |
+
| 0.9536 | 48200 | 0.006 |
|
854 |
+
| 0.9556 | 48300 | 0.0057 |
|
855 |
+
| 0.9576 | 48400 | 0.006 |
|
856 |
+
| 0.9595 | 48500 | 0.0058 |
|
857 |
+
| 0.9615 | 48600 | 0.0058 |
|
858 |
+
| 0.9635 | 48700 | 0.0058 |
|
859 |
+
| 0.9655 | 48800 | 0.0057 |
|
860 |
+
| 0.9674 | 48900 | 0.0058 |
|
861 |
+
| 0.9694 | 49000 | 0.006 |
|
862 |
+
| 0.9714 | 49100 | 0.0055 |
|
863 |
+
| 0.9734 | 49200 | 0.0058 |
|
864 |
+
| 0.9754 | 49300 | 0.0059 |
|
865 |
+
| 0.9773 | 49400 | 0.0057 |
|
866 |
+
| 0.9793 | 49500 | 0.0055 |
|
867 |
+
| 0.9813 | 49600 | 0.0059 |
|
868 |
+
| 0.9833 | 49700 | 0.0058 |
|
869 |
+
| 0.9853 | 49800 | 0.0059 |
|
870 |
+
| 0.9872 | 49900 | 0.0058 |
|
871 |
+
| 0.9892 | 50000 | 0.0056 |
|
872 |
+
| 0.9912 | 50100 | 0.0058 |
|
873 |
+
| 0.9932 | 50200 | 0.0058 |
|
874 |
+
| 0.9951 | 50300 | 0.0059 |
|
875 |
+
| 0.9971 | 50400 | 0.0059 |
|
876 |
+
| 0.9991 | 50500 | 0.006 |
|
877 |
+
|
878 |
+
</details>
|
879 |
+
|
880 |
+
### Framework Versions
|
881 |
+
- Python: 3.11.9
|
882 |
+
- Sentence Transformers: 3.3.0
|
883 |
+
- PyLate: 1.1.4
|
884 |
+
- Transformers: 4.48.0.dev0
|
885 |
+
- PyTorch: 2.4.0
|
886 |
+
- Accelerate: 1.2.1
|
887 |
+
- Datasets: 2.21.0
|
888 |
+
- Tokenizers: 0.21.0
|
889 |
+
|
890 |
+
|
891 |
+
## Citation
|
892 |
+
|
893 |
+
### BibTeX
|
894 |
+
|
895 |
+
#### Sentence Transformers
|
896 |
+
```bibtex
|
897 |
+
@inproceedings{reimers-2019-sentence-bert,
|
898 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
899 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
900 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
901 |
+
month = "11",
|
902 |
+
year = "2019",
|
903 |
+
publisher = "Association for Computational Linguistics",
|
904 |
+
url = "https://arxiv.org/abs/1908.10084"
|
905 |
+
}
|
906 |
+
```
|
907 |
+
|
908 |
+
#### PyLate
|
909 |
+
```bibtex
|
910 |
+
@misc{PyLate,
|
911 |
+
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
|
912 |
+
author={Chaffin, Antoine and Sourty, Raphaël},
|
913 |
+
url={https://github.com/lightonai/pylate},
|
914 |
+
year={2024}
|
915 |
+
}
|
916 |
+
```
|
917 |
+
|
918 |
+
<!--
|
919 |
+
## Glossary
|
920 |
+
|
921 |
+
*Clearly define terms in order to be accessible across audiences.*
|
922 |
+
-->
|
923 |
+
|
924 |
+
<!--
|
925 |
+
## Model Card Authors
|
926 |
+
|
927 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
928 |
+
-->
|
929 |
+
|
930 |
+
<!--
|
931 |
+
## Model Card Contact
|
932 |
+
|
933 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
934 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/home/joe/ModernBERT/examples/output/ModernBERT-base/ModernBERT-base-colbert-KD-8e-05/final",
|
3 |
+
"architectures": [
|
4 |
+
"ModernBertModel"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 50281,
|
9 |
+
"classifier_activation": "gelu",
|
10 |
+
"classifier_bias": false,
|
11 |
+
"classifier_dropout": 0.0,
|
12 |
+
"classifier_pooling": "mean",
|
13 |
+
"cls_token_id": 50281,
|
14 |
+
"decoder_bias": true,
|
15 |
+
"deterministic_flash_attn": false,
|
16 |
+
"embedding_dropout": 0.0,
|
17 |
+
"eos_token_id": 50282,
|
18 |
+
"global_attn_every_n_layers": 3,
|
19 |
+
"global_rope_theta": 160000.0,
|
20 |
+
"gradient_checkpointing": false,
|
21 |
+
"hidden_activation": "gelu",
|
22 |
+
"hidden_size": 768,
|
23 |
+
"initializer_cutoff_factor": 2.0,
|
24 |
+
"initializer_range": 0.02,
|
25 |
+
"intermediate_size": 1152,
|
26 |
+
"layer_norm_eps": 1e-05,
|
27 |
+
"local_attention": 128,
|
28 |
+
"local_rope_theta": 10000.0,
|
29 |
+
"max_position_embeddings": 8192,
|
30 |
+
"mlp_bias": false,
|
31 |
+
"mlp_dropout": 0.0,
|
32 |
+
"model_type": "modernbert",
|
33 |
+
"norm_bias": false,
|
34 |
+
"norm_eps": 1e-05,
|
35 |
+
"num_attention_heads": 12,
|
36 |
+
"num_hidden_layers": 22,
|
37 |
+
"pad_token_id": 50283,
|
38 |
+
"position_embedding_type": "absolute",
|
39 |
+
"reference_compile": false,
|
40 |
+
"sep_token_id": 50282,
|
41 |
+
"sparse_pred_ignore_index": -100,
|
42 |
+
"sparse_prediction": false,
|
43 |
+
"torch_dtype": "float32",
|
44 |
+
"transformers_version": "4.48.0.dev0",
|
45 |
+
"vocab_size": 50370
|
46 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.0",
|
4 |
+
"transformers": "4.48.0.dev0",
|
5 |
+
"pytorch": "2.4.0"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine",
|
10 |
+
"query_prefix": "[Q] ",
|
11 |
+
"document_prefix": "[D] ",
|
12 |
+
"query_length": 32,
|
13 |
+
"document_length": 180,
|
14 |
+
"attend_to_expansion_tokens": false,
|
15 |
+
"skiplist_words": [
|
16 |
+
"!",
|
17 |
+
"\"",
|
18 |
+
"#",
|
19 |
+
"$",
|
20 |
+
"%",
|
21 |
+
"&",
|
22 |
+
"'",
|
23 |
+
"(",
|
24 |
+
")",
|
25 |
+
"*",
|
26 |
+
"+",
|
27 |
+
",",
|
28 |
+
"-",
|
29 |
+
".",
|
30 |
+
"/",
|
31 |
+
":",
|
32 |
+
";",
|
33 |
+
"<",
|
34 |
+
"=",
|
35 |
+
">",
|
36 |
+
"?",
|
37 |
+
"@",
|
38 |
+
"[",
|
39 |
+
"\\",
|
40 |
+
"]",
|
41 |
+
"^",
|
42 |
+
"_",
|
43 |
+
"`",
|
44 |
+
"{",
|
45 |
+
"|",
|
46 |
+
"}",
|
47 |
+
"~"
|
48 |
+
]
|
49 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0148f1124fae8d4414ca486e88d48bb0e394ebe9f7ddad61a5cedd471955e9ac
|
3 |
+
size 596076280
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Dense",
|
12 |
+
"type": "pylate.models.Dense.Dense"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 179,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": true,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "[MASK]",
|
17 |
+
"sep_token": {
|
18 |
+
"content": "[SEP]",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"unk_token": {
|
25 |
+
"content": "[UNK]",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,968 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "|||IP_ADDRESS|||",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": true,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": false
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<|padding|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"50254": {
|
20 |
+
"content": " ",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": true,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": false
|
26 |
+
},
|
27 |
+
"50255": {
|
28 |
+
"content": " ",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": false
|
34 |
+
},
|
35 |
+
"50256": {
|
36 |
+
"content": " ",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": true,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": false
|
42 |
+
},
|
43 |
+
"50257": {
|
44 |
+
"content": " ",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": true,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": false
|
50 |
+
},
|
51 |
+
"50258": {
|
52 |
+
"content": " ",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": true,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": false
|
58 |
+
},
|
59 |
+
"50259": {
|
60 |
+
"content": " ",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": true,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": false
|
66 |
+
},
|
67 |
+
"50260": {
|
68 |
+
"content": " ",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": true,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": false
|
74 |
+
},
|
75 |
+
"50261": {
|
76 |
+
"content": " ",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": true,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": false
|
82 |
+
},
|
83 |
+
"50262": {
|
84 |
+
"content": " ",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": true,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": false
|
90 |
+
},
|
91 |
+
"50263": {
|
92 |
+
"content": " ",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": true,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": false
|
98 |
+
},
|
99 |
+
"50264": {
|
100 |
+
"content": " ",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": true,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": false
|
106 |
+
},
|
107 |
+
"50265": {
|
108 |
+
"content": " ",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": true,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": false
|
114 |
+
},
|
115 |
+
"50266": {
|
116 |
+
"content": " ",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": true,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": false
|
122 |
+
},
|
123 |
+
"50267": {
|
124 |
+
"content": " ",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": true,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": false
|
130 |
+
},
|
131 |
+
"50268": {
|
132 |
+
"content": " ",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": true,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": false
|
138 |
+
},
|
139 |
+
"50269": {
|
140 |
+
"content": " ",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": true,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": false
|
146 |
+
},
|
147 |
+
"50270": {
|
148 |
+
"content": " ",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": true,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": false
|
154 |
+
},
|
155 |
+
"50271": {
|
156 |
+
"content": " ",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": true,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": false
|
162 |
+
},
|
163 |
+
"50272": {
|
164 |
+
"content": " ",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": true,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": false
|
170 |
+
},
|
171 |
+
"50273": {
|
172 |
+
"content": " ",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": true,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": false
|
178 |
+
},
|
179 |
+
"50274": {
|
180 |
+
"content": " ",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": true,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": false
|
186 |
+
},
|
187 |
+
"50275": {
|
188 |
+
"content": " ",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": true,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": false
|
194 |
+
},
|
195 |
+
"50276": {
|
196 |
+
"content": " ",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": true,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": false
|
202 |
+
},
|
203 |
+
"50277": {
|
204 |
+
"content": "|||EMAIL_ADDRESS|||",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": true,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": false
|
210 |
+
},
|
211 |
+
"50278": {
|
212 |
+
"content": "|||PHONE_NUMBER|||",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": true,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": false
|
218 |
+
},
|
219 |
+
"50279": {
|
220 |
+
"content": "<|endoftext|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"50280": {
|
228 |
+
"content": "[UNK]",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"50281": {
|
236 |
+
"content": "[CLS]",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"50282": {
|
244 |
+
"content": "[SEP]",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"50283": {
|
252 |
+
"content": "[PAD]",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"50284": {
|
260 |
+
"content": "[MASK]",
|
261 |
+
"lstrip": true,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"50285": {
|
268 |
+
"content": "[unused0]",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": true,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": false
|
274 |
+
},
|
275 |
+
"50286": {
|
276 |
+
"content": "[unused1]",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": true,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": false
|
282 |
+
},
|
283 |
+
"50287": {
|
284 |
+
"content": "[unused2]",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": true,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": false
|
290 |
+
},
|
291 |
+
"50288": {
|
292 |
+
"content": "[unused3]",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": true,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": false
|
298 |
+
},
|
299 |
+
"50289": {
|
300 |
+
"content": "[unused4]",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": true,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": false
|
306 |
+
},
|
307 |
+
"50290": {
|
308 |
+
"content": "[unused5]",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": true,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": false
|
314 |
+
},
|
315 |
+
"50291": {
|
316 |
+
"content": "[unused6]",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": true,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": false
|
322 |
+
},
|
323 |
+
"50292": {
|
324 |
+
"content": "[unused7]",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": true,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": false
|
330 |
+
},
|
331 |
+
"50293": {
|
332 |
+
"content": "[unused8]",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": true,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": false
|
338 |
+
},
|
339 |
+
"50294": {
|
340 |
+
"content": "[unused9]",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": true,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": false
|
346 |
+
},
|
347 |
+
"50295": {
|
348 |
+
"content": "[unused10]",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": true,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": false
|
354 |
+
},
|
355 |
+
"50296": {
|
356 |
+
"content": "[unused11]",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": true,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": false
|
362 |
+
},
|
363 |
+
"50297": {
|
364 |
+
"content": "[unused12]",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": true,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": false
|
370 |
+
},
|
371 |
+
"50298": {
|
372 |
+
"content": "[unused13]",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": true,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": false
|
378 |
+
},
|
379 |
+
"50299": {
|
380 |
+
"content": "[unused14]",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": true,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": false
|
386 |
+
},
|
387 |
+
"50300": {
|
388 |
+
"content": "[unused15]",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": true,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": false
|
394 |
+
},
|
395 |
+
"50301": {
|
396 |
+
"content": "[unused16]",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": true,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": false
|
402 |
+
},
|
403 |
+
"50302": {
|
404 |
+
"content": "[unused17]",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": true,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": false
|
410 |
+
},
|
411 |
+
"50303": {
|
412 |
+
"content": "[unused18]",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": true,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": false
|
418 |
+
},
|
419 |
+
"50304": {
|
420 |
+
"content": "[unused19]",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": true,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": false
|
426 |
+
},
|
427 |
+
"50305": {
|
428 |
+
"content": "[unused20]",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": true,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": false
|
434 |
+
},
|
435 |
+
"50306": {
|
436 |
+
"content": "[unused21]",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": true,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": false
|
442 |
+
},
|
443 |
+
"50307": {
|
444 |
+
"content": "[unused22]",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": true,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": false
|
450 |
+
},
|
451 |
+
"50308": {
|
452 |
+
"content": "[unused23]",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": true,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": false
|
458 |
+
},
|
459 |
+
"50309": {
|
460 |
+
"content": "[unused24]",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": true,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": false
|
466 |
+
},
|
467 |
+
"50310": {
|
468 |
+
"content": "[unused25]",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": true,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": false
|
474 |
+
},
|
475 |
+
"50311": {
|
476 |
+
"content": "[unused26]",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": true,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": false
|
482 |
+
},
|
483 |
+
"50312": {
|
484 |
+
"content": "[unused27]",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": true,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": false
|
490 |
+
},
|
491 |
+
"50313": {
|
492 |
+
"content": "[unused28]",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": true,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": false
|
498 |
+
},
|
499 |
+
"50314": {
|
500 |
+
"content": "[unused29]",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": true,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": false
|
506 |
+
},
|
507 |
+
"50315": {
|
508 |
+
"content": "[unused30]",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": true,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": false
|
514 |
+
},
|
515 |
+
"50316": {
|
516 |
+
"content": "[unused31]",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": true,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": false
|
522 |
+
},
|
523 |
+
"50317": {
|
524 |
+
"content": "[unused32]",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": true,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": false
|
530 |
+
},
|
531 |
+
"50318": {
|
532 |
+
"content": "[unused33]",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": true,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": false
|
538 |
+
},
|
539 |
+
"50319": {
|
540 |
+
"content": "[unused34]",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": true,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": false
|
546 |
+
},
|
547 |
+
"50320": {
|
548 |
+
"content": "[unused35]",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": true,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": false
|
554 |
+
},
|
555 |
+
"50321": {
|
556 |
+
"content": "[unused36]",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": true,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": false
|
562 |
+
},
|
563 |
+
"50322": {
|
564 |
+
"content": "[unused37]",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": true,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": false
|
570 |
+
},
|
571 |
+
"50323": {
|
572 |
+
"content": "[unused38]",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": true,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": false
|
578 |
+
},
|
579 |
+
"50324": {
|
580 |
+
"content": "[unused39]",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": true,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": false
|
586 |
+
},
|
587 |
+
"50325": {
|
588 |
+
"content": "[unused40]",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": true,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": false
|
594 |
+
},
|
595 |
+
"50326": {
|
596 |
+
"content": "[unused41]",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": true,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": false
|
602 |
+
},
|
603 |
+
"50327": {
|
604 |
+
"content": "[unused42]",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": true,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": false
|
610 |
+
},
|
611 |
+
"50328": {
|
612 |
+
"content": "[unused43]",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": true,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": false
|
618 |
+
},
|
619 |
+
"50329": {
|
620 |
+
"content": "[unused44]",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": true,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": false
|
626 |
+
},
|
627 |
+
"50330": {
|
628 |
+
"content": "[unused45]",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": true,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": false
|
634 |
+
},
|
635 |
+
"50331": {
|
636 |
+
"content": "[unused46]",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": true,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": false
|
642 |
+
},
|
643 |
+
"50332": {
|
644 |
+
"content": "[unused47]",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": true,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": false
|
650 |
+
},
|
651 |
+
"50333": {
|
652 |
+
"content": "[unused48]",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": true,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": false
|
658 |
+
},
|
659 |
+
"50334": {
|
660 |
+
"content": "[unused49]",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": true,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": false
|
666 |
+
},
|
667 |
+
"50335": {
|
668 |
+
"content": "[unused50]",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": true,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": false
|
674 |
+
},
|
675 |
+
"50336": {
|
676 |
+
"content": "[unused51]",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": true,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": false
|
682 |
+
},
|
683 |
+
"50337": {
|
684 |
+
"content": "[unused52]",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": true,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": false
|
690 |
+
},
|
691 |
+
"50338": {
|
692 |
+
"content": "[unused53]",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": true,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": false
|
698 |
+
},
|
699 |
+
"50339": {
|
700 |
+
"content": "[unused54]",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": true,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": false
|
706 |
+
},
|
707 |
+
"50340": {
|
708 |
+
"content": "[unused55]",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": true,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": false
|
714 |
+
},
|
715 |
+
"50341": {
|
716 |
+
"content": "[unused56]",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": true,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": false
|
722 |
+
},
|
723 |
+
"50342": {
|
724 |
+
"content": "[unused57]",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": true,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": false
|
730 |
+
},
|
731 |
+
"50343": {
|
732 |
+
"content": "[unused58]",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": true,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": false
|
738 |
+
},
|
739 |
+
"50344": {
|
740 |
+
"content": "[unused59]",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": true,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": false
|
746 |
+
},
|
747 |
+
"50345": {
|
748 |
+
"content": "[unused60]",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": true,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": false
|
754 |
+
},
|
755 |
+
"50346": {
|
756 |
+
"content": "[unused61]",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": true,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": false
|
762 |
+
},
|
763 |
+
"50347": {
|
764 |
+
"content": "[unused62]",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": true,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": false
|
770 |
+
},
|
771 |
+
"50348": {
|
772 |
+
"content": "[unused63]",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": true,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": false
|
778 |
+
},
|
779 |
+
"50349": {
|
780 |
+
"content": "[unused64]",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": true,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": false
|
786 |
+
},
|
787 |
+
"50350": {
|
788 |
+
"content": "[unused65]",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": true,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": false
|
794 |
+
},
|
795 |
+
"50351": {
|
796 |
+
"content": "[unused66]",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": true,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": false
|
802 |
+
},
|
803 |
+
"50352": {
|
804 |
+
"content": "[unused67]",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": true,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": false
|
810 |
+
},
|
811 |
+
"50353": {
|
812 |
+
"content": "[unused68]",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": true,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": false
|
818 |
+
},
|
819 |
+
"50354": {
|
820 |
+
"content": "[unused69]",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": true,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": false
|
826 |
+
},
|
827 |
+
"50355": {
|
828 |
+
"content": "[unused70]",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": true,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": false
|
834 |
+
},
|
835 |
+
"50356": {
|
836 |
+
"content": "[unused71]",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": true,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": false
|
842 |
+
},
|
843 |
+
"50357": {
|
844 |
+
"content": "[unused72]",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": true,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": false
|
850 |
+
},
|
851 |
+
"50358": {
|
852 |
+
"content": "[unused73]",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": true,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": false
|
858 |
+
},
|
859 |
+
"50359": {
|
860 |
+
"content": "[unused74]",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": true,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": false
|
866 |
+
},
|
867 |
+
"50360": {
|
868 |
+
"content": "[unused75]",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": true,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": false
|
874 |
+
},
|
875 |
+
"50361": {
|
876 |
+
"content": "[unused76]",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": true,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": false
|
882 |
+
},
|
883 |
+
"50362": {
|
884 |
+
"content": "[unused77]",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": true,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": false
|
890 |
+
},
|
891 |
+
"50363": {
|
892 |
+
"content": "[unused78]",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": true,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": false
|
898 |
+
},
|
899 |
+
"50364": {
|
900 |
+
"content": "[unused79]",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": true,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": false
|
906 |
+
},
|
907 |
+
"50365": {
|
908 |
+
"content": "[unused80]",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": true,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": false
|
914 |
+
},
|
915 |
+
"50366": {
|
916 |
+
"content": "[unused81]",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": true,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": false
|
922 |
+
},
|
923 |
+
"50367": {
|
924 |
+
"content": "[unused82]",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": true,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": false
|
930 |
+
},
|
931 |
+
"50368": {
|
932 |
+
"content": "[Q] ",
|
933 |
+
"lstrip": false,
|
934 |
+
"normalized": true,
|
935 |
+
"rstrip": false,
|
936 |
+
"single_word": false,
|
937 |
+
"special": false
|
938 |
+
},
|
939 |
+
"50369": {
|
940 |
+
"content": "[D] ",
|
941 |
+
"lstrip": false,
|
942 |
+
"normalized": true,
|
943 |
+
"rstrip": false,
|
944 |
+
"single_word": false,
|
945 |
+
"special": false
|
946 |
+
}
|
947 |
+
},
|
948 |
+
"clean_up_tokenization_spaces": true,
|
949 |
+
"cls_token": "[CLS]",
|
950 |
+
"extra_special_tokens": {},
|
951 |
+
"mask_token": "[MASK]",
|
952 |
+
"max_length": 179,
|
953 |
+
"model_input_names": [
|
954 |
+
"input_ids",
|
955 |
+
"attention_mask"
|
956 |
+
],
|
957 |
+
"model_max_length": 179,
|
958 |
+
"pad_to_multiple_of": null,
|
959 |
+
"pad_token": "[MASK]",
|
960 |
+
"pad_token_type_id": 0,
|
961 |
+
"padding_side": "right",
|
962 |
+
"sep_token": "[SEP]",
|
963 |
+
"stride": 0,
|
964 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
965 |
+
"truncation_side": "right",
|
966 |
+
"truncation_strategy": "longest_first",
|
967 |
+
"unk_token": "[UNK]"
|
968 |
+
}
|