File size: 51,882 Bytes
180c742 fdf5082 180c742 16f9f23 1692eb9 16f9f23 180c742 9c77ae2 0a7c7fb 6cd7091 1d9e5a1 6cd7091 180c742 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 |
---
base_model: answerdotai/ModernBERT-large
datasets:
- sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1
language:
- en
library_name: sentence-transformers
metrics:
- cosine_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:11662655
- loss:CachedMultipleNegativesRankingLoss
widget:
- source_sentence: what county is lyndhurst, ohio in
sentences:
- This article is about the song written by Kenneth Gamble, Leon Huff and Cary Gilbert.
For the Tina Turner song, see Don't Leave Me This Way (Tina Turner song). Don't
Leave Me This Way is a song written by Kenneth Gamble, Leon Huff and Cary Gilbert.
First charting as a hit for Harold Melvin & the Blue Notes featuring Teddy Pendergrass,
an act on Gamble & Huff's Philadelphia International label in 1975, Don't Leave
Me This Way was later a huge disco hit for Motown artist Thelma Houston in 1977.
- "Lyndhurst is a city in Cuyahoga County, Ohio, United States. The population was\
\ 14,001 at the 2010 census. Lyndhurst is located in northeastern Ohio, and is\
\ a suburb of Cleveland. A small part of Lyndhurst was originally part of Mayfield\
\ Township. It used to be called Euclidville before Lyndhurst was chosen. Lyndhurst\
\ is located at 41°31â\x80²17â\x80³N 81°29â\x80²25â\x80³W / 41.52139°N 81.49028°W\
\ / 41.52139; -81.49028 (41.521352, -81.490141)."
- Welcome to Trumbull County... Trumbull County, the county seat, located in Warren,
Ohio, consists of a combination of both urban and rural communities situated in
the northeast corner of Ohio. It is situated roughly between the Youngstown, Cleveland
and Akron corridors.
- source_sentence: who founded the american graphophone company
sentences:
- In 1886, Graham Bell and Charles Sumner Tainter founded the American Graphophone
Company to distribute and sell graphophones in the US and Canada under license
from the Volta Graphophone Company. In 1890, the American Graphophone Company
stopped production of new phonographs due to sagging orders.
- ShelfGenie How much does a ShelfGenie franchise cost? ShelfGenie has a franchise
fee of up to $45,000, with a total initial investment range of $70,100 to $107,750.
Local ShelfGenie franchise opportunities. ShelfGenie is looking to grow in a number
of cities around the country. To find out if there's a franchise opportunity in
your city, unlock more information.
- "A+E Networks. The technology that made the modern music business possible came\
\ into existence in the New Jersey laboratory where Thomas Alva Edison created\
\ the first device to both record sound and play it back. He was awarded U.S.\
\ Patent No. 200,521 for his inventionâ\x80\x93the phonographâ\x80\x93on this\
\ day in 1878."
- source_sentence: is housekeeping camp flooded?
sentences:
- 'What is the importance of housekeeping at work? A: Workplace housekeeping promotes
sanitation, safety, organization and productivity. It also boosts morale. Daily
housekeeping maintenance keeps the workplac... Full Answer >'
- The back patio area of a cabin is partially submerged in flood water at Housekeeping
Camp on Monday, Jan. 9, 2017, in Yosemite National Park. The Merced River, swollen
with storm runoff, crested at 12.7 feet at 4 a.m. SILVIA FLORES sflores@fresnobee.com.
- "1 Bake for 8 minutes, then rotate the pan and check the underside of the bagels.\
\ 2 If theyâ\x80\x99re getting too dark, place another pan under the baking sheet.\
\ ( 3 Doubling the pan will insulate the first baking sheet.) Bake for another\
\ 8 to 12 minutes, until the bagels are a golden brown. 4 13."
- source_sentence: causes for infection in the nerve of tooth
sentences:
- If a cavity is causing the toothache, your dentist will fill the cavity or possibly
extract the tooth, if necessary. A root canal might be needed if the cause of
the toothache is determined to be an infection of the tooth's nerve. Bacteria
that have worked their way into the inner aspects of the tooth cause such an infection.
An antibiotic may be prescribed if there is fever or swelling of the jaw.
- "According to Article III, Section 1 of the Constitution, judges and justices\
\ of the Judicial Branch serve during good behavior.. This means they are appointed\
\ for life, unles â\x80¦ s they are impeached and removed from office. + 50 others\
\ found this useful.he term length for members of the House are two years and\
\ a staggering six years for members of the Senate."
- Inflamed or infected pulp (pulpitis) most often causes a toothache. To relieve
the pain and prevent further complications, the tooth may be extracted (surgically
removed) or saved by root canal treatment.
- source_sentence: what county is hayden in
sentences:
- Normally, the Lead Agency is the agency with general governmental powers such
as a city or a county. Agencies with limited powers or districts that provide
a public service/utility such as a recreation and park district will tend to be
a Responsible Agency.
- According to the United States Census Bureau, the city has a total area of 9.61
square miles (24.89 km2), of which 9.60 square miles (24.86 km2) is land and 0.01
square miles (0.03 km2) is water. It lies at the southwestern end of Hayden Lake,
and the elevation of the city is 2,287 feet (697 m) above sea level. Hayden is
located on U.S. Route 95 at the junction of Route 41. It is also four miles (6
km) north of Interstate 90 and Coeur d'Alene. The Coeur d'Alene airport is northwest
of Hayden.
- Hayden is a city in Kootenai County, Idaho, United States. Located in the northern
portion of the state, just north of Coeur d'Alene, its population was 13,294 at
the 2010 census.
model-index:
- name: SentenceTransformer based on answerdotai/ModernBERT-large
results:
- task:
type: triplet
name: Triplet
dataset:
name: msmarco co condenser dev
type: msmarco-co-condenser-dev
metrics:
- type: cosine_accuracy
value: 0.994
name: Cosine Accuracy
- task:
type: retrieval
dataset:
name: SCIDOCS
type: SCIDOCS
split: test
metrics:
- type: ndcg@10
value: 0.15789
- task:
type: retrieval
dataset:
name: FiQA2018
type: FiQA2018
split: test
metrics:
- type: ndcg@10
value: 0.33974
- task:
type: retrieval
dataset:
name: HotpotQA
type: HotpotQA
split: test
metrics:
- type: ndcg@10
value: 0.51818
- task:
type: retrieval
dataset:
name: ArguAna
type: ArguAna
split: test
metrics:
- type: ndcg@10
value: 0.47797
- task:
type: retrieval
dataset:
name: NFCorpus
type: NFCorpus
split: test
metrics:
- type: ndcg@10
value: 0.28443
- task:
type: retrieval
dataset:
name: SciFact
type: SciFact
split: test
metrics:
- type: ndcg@10
value: 0.60626
- task:
type: retrieval
dataset:
name: TRECCOVID
type: TRECCOVID
split: test
metrics:
- type: ndcg@10
value: 0.77495
---
# SentenceTransformer based on answerdotai/ModernBERT-large
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) on the [msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
I finetune ModernBERT-base using script from offical repo [train_st.py](https://github.com/AnswerDotAI/ModernBERT/blob/main/examples/train_st.py) on a RTX 4090 GPU with the only change of setting mini-batch size of `CachedMultipleNegativesRankingLoss` to 64. Training for 1 epoch takes less than 2 hours.
The mini-batch size of GradCache should not change model performnace, but the finetuned model performs better than that recorded in the paper.
Training logs can be found here: https://api.wandb.ai/links/joe32140/ekuauaao.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) <!-- at revision f87846cf8be76fceb18718f0245d18c8e6571215 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("joe32140/ModernBERT-large-msmarco")
# Run inference
sentences = [
'what county is hayden in',
"Hayden is a city in Kootenai County, Idaho, United States. Located in the northern portion of the state, just north of Coeur d'Alene, its population was 13,294 at the 2010 census.",
"According to the United States Census Bureau, the city has a total area of 9.61 square miles (24.89 km2), of which 9.60 square miles (24.86 km2) is land and 0.01 square miles (0.03 km2) is water. It lies at the southwestern end of Hayden Lake, and the elevation of the city is 2,287 feet (697 m) above sea level. Hayden is located on U.S. Route 95 at the junction of Route 41. It is also four miles (6 km) north of Interstate 90 and Coeur d'Alene. The Coeur d'Alene airport is northwest of Hayden.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Triplet
* Dataset: `msmarco-co-condenser-dev`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:----------|
| **cosine_accuracy** | **0.994** |
#### Retrieval tasks compared to original numbers in the paper
| | ModernBERT-base | ModernBERT-base (ours) | ModernBERT-large | ModernBERT-large (ours) |
|:------------------|------------------|-------------------------|-------------------|--------------------------|
| NFCorpus | 23.7 | 26.66 | 26.2 | 28.44 |
| SciFact | 57.0 | 61.64 | 60.4 | 63.66 |
| TREC-Covid | 72.1 | 71.43 | 74.1 | 77.49 |
| FiQA | 28.8 | 30.73 | 33.1 | 34.35 |
| ArguAna | 35.7 | 46.38 | 38.2 | 47.79 |
| SciDocs | 12.5 | 13.67 | 13.8 | 15.78 |
| FEVER | 59.9 | 65.7 | 62.7 | 68.2 |
| Climate-FEVER | 23.6 | 22.6 | 20.5 | 22.9 |
| MLDR - OOD | 27.4 | 30.58 | 34.3 | 38.99 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1
* Dataset: [msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1) at [84ed2d3](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1/tree/84ed2d35626f617d890bd493b4d6db69a741e0e2)
* Size: 11,662,655 training samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 9.26 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 79.14 tokens</li><li>max: 222 tokens</li></ul> | <ul><li>min: 24 tokens</li><li>mean: 80.09 tokens</li><li>max: 436 tokens</li></ul> |
* Samples:
| query | positive | negative |
|:---------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what is the meaning of menu planning</code> | <code>Menu planning is the selection of a menu for an event. Such as picking out the dinner for your wedding or even a meal at a Birthday Party. Menu planning is when you are preparing a calendar of meals and you have to sit down and decide what meat and veggies you want to serve on each certain day.</code> | <code>Menu Costs. In economics, a menu cost is the cost to a firm resulting from changing its prices. The name stems from the cost of restaurants literally printing new menus, but economists use it to refer to the costs of changing nominal prices in general.</code> |
| <code>how old is brett butler</code> | <code>Brett Butler is 59 years old. To be more precise (and nerdy), the current age as of right now is 21564 days or (even more geeky) 517536 hours. That's a lot of hours!</code> | <code>Passed in: St. John's, Newfoundland and Labrador, Canada. Passed on: 16/07/2016. Published in the St. John's Telegram. Passed away suddenly at the Health Sciences Centre surrounded by his loving family, on July 16, 2016 Robert (Bobby) Joseph Butler, age 52 years. Predeceased by his special aunt Geri Murrin and uncle Mike Mchugh; grandparents Joe and Margaret Murrin and Jack and Theresa Butler.</code> |
| <code>when was the last navajo treaty sign?</code> | <code>In Executive Session, Senate of the United States, July 25, 1868. Resolved, (two-thirds of the senators present concurring,) That the Senate advise and consent to the ratification of the treaty between the United States and the Navajo Indians, concluded at Fort Sumner, New Mexico, on the first day of June, 1868.</code> | <code>Share Treaty of Greenville. The Treaty of Greenville was signed August 3, 1795, between the United States, represented by Gen. Anthony Wayne, and chiefs of the Indian tribes located in the Northwest Territory, including the Wyandots, Delawares, Shawnees, Ottawas, Miamis, and others.</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1
* Dataset: [msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1) at [84ed2d3](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1/tree/84ed2d35626f617d890bd493b4d6db69a741e0e2)
* Size: 11,662,655 evaluation samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative |
|:--------|:--------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 9.2 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 80.44 tokens</li><li>max: 241 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 80.38 tokens</li><li>max: 239 tokens</li></ul> |
* Samples:
| query | positive | negative |
|:------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what county is holly springs nc in</code> | <code>Holly Springs, North Carolina. Holly Springs is a town in Wake County, North Carolina, United States. As of the 2010 census, the town population was 24,661, over 2½ times its population in 2000. Contents.</code> | <code>The Mt. Holly Springs Park & Resort. One of the numerous trolley routes that carried people around the county at the turn of the century was the Carlisle & Mt. Holly Railway Company. The âHolly Trolleyâ as it came to be known was put into service by Patricio Russo and made its first run on May 14, 1901.</code> |
| <code>how long does nyquil stay in your system</code> | <code>In order to understand exactly how long Nyquil lasts, it is absolutely vital to learn about the various ingredients in the drug. One of the ingredients found in Nyquil is Doxylamine, which is an antihistamine. This specific medication has a biological half-life or 6 to 12 hours. With this in mind, it is possible for the drug to remain in the system for a period of 12 to 24 hours. It should be known that the specifics will depend on a wide variety of different factors, including your age and metabolism.</code> | <code>I confirmed that NyQuil is about 10% alcohol, a higher content than most domestic beers. When I asked about the relatively high proof, I was told that the alcohol dilutes the active ingredients. The alcohol free version is there for customers with addiction issues.. also found that in that version there is twice the amount of DXM. When I asked if I could speak to a chemist or scientist, I was told they didn't have anyone who fit that description there. Itâs been eight years since I kicked NyQuil. I've been sober from alcohol for four years.</code> |
| <code>what are mineral water</code> | <code>1 Mineral water â water from a mineral spring that contains various minerals, such as salts and sulfur compounds. 2 It comes from a source tapped at one or more bore holes or spring, and originates from a geologically and physically protected underground water source. Mineral water â water from a mineral spring that contains various minerals, such as salts and sulfur compounds. 2 It comes from a source tapped at one or more bore holes or spring, and originates from a geologically and physically protected underground water source.</code> | <code>Minerals for Your Body. Drinking mineral water is beneficial to health and well-being. But it is not only the amount of water you drink that is important-what the water contains is even more essential.inerals for Your Body. Drinking mineral water is beneficial to health and well-being. But it is not only the amount of water you drink that is important-what the water contains is even more essential.</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 512
- `per_device_eval_batch_size`: 512
- `learning_rate`: 0.0001
- `num_train_epochs`: 1
- `warmup_ratio`: 0.05
- `bf16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 512
- `per_device_eval_batch_size`: 512
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.0001
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.05
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | msmarco-co-condenser-dev_cosine_accuracy |
|:------:|:----:|:-------------:|:----------------------------------------:|
| 0 | 0 | - | 0.599 |
| 0.0041 | 10 | 6.0983 | - |
| 0.0082 | 20 | 4.4588 | - |
| 0.0123 | 30 | 2.2492 | - |
| 0.0164 | 40 | 0.9969 | - |
| 0.0205 | 50 | 0.5272 | - |
| 0.0246 | 60 | 0.3982 | - |
| 0.0287 | 70 | 0.3335 | - |
| 0.0328 | 80 | 0.3024 | - |
| 0.0369 | 90 | 0.2932 | - |
| 0.0410 | 100 | 0.2695 | - |
| 0.0450 | 110 | 0.2574 | - |
| 0.0491 | 120 | 0.2447 | - |
| 0.0532 | 130 | 0.2491 | - |
| 0.0573 | 140 | 0.2318 | - |
| 0.0614 | 150 | 0.2292 | - |
| 0.0655 | 160 | 0.2213 | - |
| 0.0696 | 170 | 0.218 | - |
| 0.0737 | 180 | 0.2234 | - |
| 0.0778 | 190 | 0.2066 | - |
| 0.0819 | 200 | 0.1987 | - |
| 0.0860 | 210 | 0.1978 | - |
| 0.0901 | 220 | 0.2024 | - |
| 0.0942 | 230 | 0.1959 | - |
| 0.0983 | 240 | 0.1804 | - |
| 0.1024 | 250 | 0.1868 | - |
| 0.1065 | 260 | 0.1983 | - |
| 0.1106 | 270 | 0.1641 | - |
| 0.1147 | 280 | 0.1713 | - |
| 0.1188 | 290 | 0.1726 | - |
| 0.1229 | 300 | 0.17 | - |
| 0.1269 | 310 | 0.1783 | - |
| 0.1310 | 320 | 0.1742 | - |
| 0.1351 | 330 | 0.1654 | - |
| 0.1392 | 340 | 0.1663 | - |
| 0.1433 | 350 | 0.1616 | - |
| 0.1474 | 360 | 0.157 | - |
| 0.1515 | 370 | 0.1574 | - |
| 0.1556 | 380 | 0.1529 | - |
| 0.1597 | 390 | 0.1561 | - |
| 0.1638 | 400 | 0.1435 | - |
| 0.1679 | 410 | 0.1555 | - |
| 0.1720 | 420 | 0.1455 | - |
| 0.1761 | 430 | 0.1416 | - |
| 0.1802 | 440 | 0.1407 | - |
| 0.1843 | 450 | 0.138 | - |
| 0.1884 | 460 | 0.1387 | - |
| 0.1925 | 470 | 0.1499 | - |
| 0.1966 | 480 | 0.1372 | - |
| 0.2007 | 490 | 0.1308 | - |
| 0.2048 | 500 | 0.1367 | - |
| 0.2088 | 510 | 0.1324 | - |
| 0.2129 | 520 | 0.1317 | - |
| 0.2170 | 530 | 0.1263 | - |
| 0.2211 | 540 | 0.1209 | - |
| 0.2252 | 550 | 0.1201 | - |
| 0.2293 | 560 | 0.1213 | - |
| 0.2334 | 570 | 0.1329 | - |
| 0.2375 | 580 | 0.1207 | - |
| 0.2416 | 590 | 0.1211 | - |
| 0.2457 | 600 | 0.1164 | - |
| 0.2498 | 610 | 0.1292 | - |
| 0.2539 | 620 | 0.1223 | - |
| 0.2580 | 630 | 0.1237 | - |
| 0.2621 | 640 | 0.1088 | - |
| 0.2662 | 650 | 0.1196 | - |
| 0.2703 | 660 | 0.1209 | - |
| 0.2744 | 670 | 0.1155 | - |
| 0.2785 | 680 | 0.1101 | - |
| 0.2826 | 690 | 0.1127 | - |
| 0.2867 | 700 | 0.1082 | - |
| 0.2907 | 710 | 0.1083 | - |
| 0.2948 | 720 | 0.1132 | - |
| 0.2989 | 730 | 0.1121 | - |
| 0.3030 | 740 | 0.1146 | - |
| 0.3071 | 750 | 0.1088 | - |
| 0.3112 | 760 | 0.0982 | - |
| 0.3153 | 770 | 0.0952 | - |
| 0.3194 | 780 | 0.1034 | - |
| 0.3235 | 790 | 0.1017 | - |
| 0.3276 | 800 | 0.1016 | - |
| 0.3317 | 810 | 0.1054 | - |
| 0.3358 | 820 | 0.1003 | - |
| 0.3399 | 830 | 0.0932 | - |
| 0.3440 | 840 | 0.0997 | - |
| 0.3481 | 850 | 0.0921 | - |
| 0.3522 | 860 | 0.0958 | - |
| 0.3563 | 870 | 0.0973 | - |
| 0.3604 | 880 | 0.0931 | - |
| 0.3645 | 890 | 0.0964 | - |
| 0.3686 | 900 | 0.0982 | - |
| 0.3726 | 910 | 0.0908 | - |
| 0.3767 | 920 | 0.0917 | - |
| 0.3808 | 930 | 0.0857 | - |
| 0.3849 | 940 | 0.0925 | - |
| 0.3890 | 950 | 0.0915 | - |
| 0.3931 | 960 | 0.089 | - |
| 0.3972 | 970 | 0.0876 | - |
| 0.4013 | 980 | 0.0959 | - |
| 0.4054 | 990 | 0.0879 | - |
| 0.4095 | 1000 | 0.0883 | - |
| 0.4136 | 1010 | 0.0824 | - |
| 0.4177 | 1020 | 0.0897 | - |
| 0.4218 | 1030 | 0.0954 | - |
| 0.4259 | 1040 | 0.0815 | - |
| 0.4300 | 1050 | 0.0806 | - |
| 0.4341 | 1060 | 0.0918 | - |
| 0.4382 | 1070 | 0.0851 | - |
| 0.4423 | 1080 | 0.0888 | - |
| 0.4464 | 1090 | 0.0863 | - |
| 0.4505 | 1100 | 0.0856 | - |
| 0.4545 | 1110 | 0.0809 | - |
| 0.4586 | 1120 | 0.085 | - |
| 0.4627 | 1130 | 0.0756 | - |
| 0.4668 | 1140 | 0.0836 | - |
| 0.4709 | 1150 | 0.0815 | - |
| 0.4750 | 1160 | 0.084 | - |
| 0.4791 | 1170 | 0.0751 | - |
| 0.4832 | 1180 | 0.0794 | - |
| 0.4873 | 1190 | 0.0844 | - |
| 0.4914 | 1200 | 0.0835 | - |
| 0.4955 | 1210 | 0.0798 | - |
| 0.4996 | 1220 | 0.0825 | - |
| 0.5037 | 1230 | 0.0796 | - |
| 0.5078 | 1240 | 0.0758 | - |
| 0.5119 | 1250 | 0.0765 | - |
| 0.5160 | 1260 | 0.0806 | - |
| 0.5201 | 1270 | 0.072 | - |
| 0.5242 | 1280 | 0.0775 | - |
| 0.5283 | 1290 | 0.076 | - |
| 0.5324 | 1300 | 0.0767 | - |
| 0.5364 | 1310 | 0.0782 | - |
| 0.5405 | 1320 | 0.07 | - |
| 0.5446 | 1330 | 0.0724 | - |
| 0.5487 | 1340 | 0.0703 | - |
| 0.5528 | 1350 | 0.072 | - |
| 0.5569 | 1360 | 0.0763 | - |
| 0.5610 | 1370 | 0.0703 | - |
| 0.5651 | 1380 | 0.0688 | - |
| 0.5692 | 1390 | 0.0703 | - |
| 0.5733 | 1400 | 0.0659 | - |
| 0.5774 | 1410 | 0.0688 | - |
| 0.5815 | 1420 | 0.0713 | - |
| 0.5856 | 1430 | 0.0722 | - |
| 0.5897 | 1440 | 0.0682 | - |
| 0.5938 | 1450 | 0.07 | - |
| 0.5979 | 1460 | 0.0649 | - |
| 0.6020 | 1470 | 0.0659 | - |
| 0.6061 | 1480 | 0.0675 | - |
| 0.6102 | 1490 | 0.0629 | - |
| 0.6143 | 1500 | 0.0683 | - |
| 0.6183 | 1510 | 0.0687 | - |
| 0.6224 | 1520 | 0.0724 | - |
| 0.6265 | 1530 | 0.0638 | - |
| 0.6306 | 1540 | 0.0709 | - |
| 0.6347 | 1550 | 0.064 | - |
| 0.6388 | 1560 | 0.0646 | - |
| 0.6429 | 1570 | 0.0673 | - |
| 0.6470 | 1580 | 0.0607 | - |
| 0.6511 | 1590 | 0.0671 | - |
| 0.6552 | 1600 | 0.0627 | - |
| 0.6593 | 1610 | 0.0644 | - |
| 0.6634 | 1620 | 0.0629 | - |
| 0.6675 | 1630 | 0.0656 | - |
| 0.6716 | 1640 | 0.0633 | - |
| 0.6757 | 1650 | 0.062 | - |
| 0.6798 | 1660 | 0.0627 | - |
| 0.6839 | 1670 | 0.0583 | - |
| 0.6880 | 1680 | 0.0612 | - |
| 0.6921 | 1690 | 0.066 | - |
| 0.6962 | 1700 | 0.0645 | - |
| 0.7002 | 1710 | 0.0599 | - |
| 0.7043 | 1720 | 0.0552 | - |
| 0.7084 | 1730 | 0.065 | - |
| 0.7125 | 1740 | 0.0614 | - |
| 0.7166 | 1750 | 0.0615 | - |
| 0.7207 | 1760 | 0.0567 | - |
| 0.7248 | 1770 | 0.0528 | - |
| 0.7289 | 1780 | 0.0541 | - |
| 0.7330 | 1790 | 0.0548 | - |
| 0.7371 | 1800 | 0.0568 | - |
| 0.7412 | 1810 | 0.053 | - |
| 0.7453 | 1820 | 0.0603 | - |
| 0.7494 | 1830 | 0.0594 | - |
| 0.7535 | 1840 | 0.0549 | - |
| 0.7576 | 1850 | 0.0601 | - |
| 0.7617 | 1860 | 0.0604 | - |
| 0.7658 | 1870 | 0.0524 | - |
| 0.7699 | 1880 | 0.057 | - |
| 0.7740 | 1890 | 0.057 | - |
| 0.7781 | 1900 | 0.0551 | - |
| 0.7821 | 1910 | 0.0574 | - |
| 0.7862 | 1920 | 0.0555 | - |
| 0.7903 | 1930 | 0.0564 | - |
| 0.7944 | 1940 | 0.052 | - |
| 0.7985 | 1950 | 0.054 | - |
| 0.8026 | 1960 | 0.0573 | - |
| 0.8067 | 1970 | 0.056 | - |
| 0.8108 | 1980 | 0.0503 | - |
| 0.8149 | 1990 | 0.0525 | - |
| 0.8190 | 2000 | 0.0505 | - |
| 0.8231 | 2010 | 0.0547 | - |
| 0.8272 | 2020 | 0.0531 | - |
| 0.8313 | 2030 | 0.0534 | - |
| 0.8354 | 2040 | 0.0542 | - |
| 0.8395 | 2050 | 0.0536 | - |
| 0.8436 | 2060 | 0.0512 | - |
| 0.8477 | 2070 | 0.0508 | - |
| 0.8518 | 2080 | 0.0517 | - |
| 0.8559 | 2090 | 0.0516 | - |
| 0.8600 | 2100 | 0.0558 | - |
| 0.8640 | 2110 | 0.0571 | - |
| 0.8681 | 2120 | 0.0536 | - |
| 0.8722 | 2130 | 0.0561 | - |
| 0.8763 | 2140 | 0.0489 | - |
| 0.8804 | 2150 | 0.0513 | - |
| 0.8845 | 2160 | 0.0455 | - |
| 0.8886 | 2170 | 0.0479 | - |
| 0.8927 | 2180 | 0.0498 | - |
| 0.8968 | 2190 | 0.0523 | - |
| 0.9009 | 2200 | 0.0513 | - |
| 0.9050 | 2210 | 0.049 | - |
| 0.9091 | 2220 | 0.0504 | - |
| 0.9132 | 2230 | 0.0462 | - |
| 0.9173 | 2240 | 0.0469 | - |
| 0.9214 | 2250 | 0.0501 | - |
| 0.9255 | 2260 | 0.046 | - |
| 0.9296 | 2270 | 0.0475 | - |
| 0.9337 | 2280 | 0.0504 | - |
| 0.9378 | 2290 | 0.0483 | - |
| 0.9419 | 2300 | 0.0536 | - |
| 0.9459 | 2310 | 0.0442 | - |
| 0.9500 | 2320 | 0.0499 | - |
| 0.9541 | 2330 | 0.0478 | - |
| 0.9582 | 2340 | 0.0499 | - |
| 0.9623 | 2350 | 0.048 | - |
| 0.9664 | 2360 | 0.0451 | - |
| 0.9705 | 2370 | 0.0501 | - |
| 0.9746 | 2380 | 0.0464 | - |
| 0.9787 | 2390 | 0.0451 | - |
| 0.9828 | 2400 | 0.0413 | - |
| 0.9869 | 2410 | 0.0478 | - |
| 0.9910 | 2420 | 0.0466 | - |
| 0.9951 | 2430 | 0.0515 | - |
| 0.9992 | 2440 | 0.0484 | - |
| 1.0 | 2442 | - | 0.994 |
</details>
### Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.3.0
- Transformers: 4.48.0.dev0
- PyTorch: 2.4.0
- Accelerate: 1.2.1
- Datasets: 2.21.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### CachedMultipleNegativesRankingLoss
```bibtex
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |