Migrate model card from transformers-repo
Browse filesRead announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/joeddav/xlm-roberta-large-xnli/README.md
README.md
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: multilingual
|
3 |
+
tags:
|
4 |
+
- text-classification
|
5 |
+
- pytorch
|
6 |
+
- tensorflow
|
7 |
+
datasets:
|
8 |
+
- multi_nli
|
9 |
+
- xnli
|
10 |
+
license: mit
|
11 |
+
pipeline_tag: zero-shot-classification
|
12 |
+
widget:
|
13 |
+
- text: "За кого вы голосуете в 2020 году?"
|
14 |
+
labels: "politique étrangère, Europe, élections, affaires, politique"
|
15 |
+
- text: "لمن تصوت في 2020؟"
|
16 |
+
labels: "السياسة الخارجية, أوروبا, الانتخابات, الأعمال, السياسة"
|
17 |
+
- text: "2020'de kime oy vereceksiniz?"
|
18 |
+
labels: "dış politika, Avrupa, seçimler, ticaret, siyaset"
|
19 |
+
---
|
20 |
+
|
21 |
+
# xlm-roberta-large-xnli
|
22 |
+
|
23 |
+
## Model Description
|
24 |
+
|
25 |
+
This model takes [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) and fine-tunes it on a combination of NLI data in 15 languages. It is intended to be used for zero-shot text classification, such as with the Hugging Face [ZeroShotClassificationPipeline](https://huggingface.co/transformers/master/main_classes/pipelines.html#transformers.ZeroShotClassificationPipeline).
|
26 |
+
|
27 |
+
## Intended Usage
|
28 |
+
|
29 |
+
This model is intended to be used for zero-shot text classification, especially in languages other than English. It is fine-tuned on XNLI, which is a multilingual NLI dataset. The model can therefore be used with any of the languages in the XNLI corpus:
|
30 |
+
|
31 |
+
- English
|
32 |
+
- French
|
33 |
+
- Spanish
|
34 |
+
- German
|
35 |
+
- Greek
|
36 |
+
- Bulgarian
|
37 |
+
- Russian
|
38 |
+
- Turkish
|
39 |
+
- Arabic
|
40 |
+
- Vietnamese
|
41 |
+
- Thai
|
42 |
+
- Chinese
|
43 |
+
- Hindi
|
44 |
+
- Swahili
|
45 |
+
- Urdu
|
46 |
+
|
47 |
+
Since the base model was pre-trained trained on 100 different languages, the
|
48 |
+
model has shown some effectiveness in languages beyond those listed above as
|
49 |
+
well. See the full list of pre-trained languages in appendix A of the
|
50 |
+
[XLM Roberata paper](https://arxiv.org/abs/1911.02116)
|
51 |
+
|
52 |
+
For English-only classification, it is recommended to use
|
53 |
+
[bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) or
|
54 |
+
[a distilled bart MNLI model](https://huggingface.co/models?filter=pipeline_tag%3Azero-shot-classification&search=valhalla).
|
55 |
+
|
56 |
+
#### With the zero-shot classification pipeline
|
57 |
+
|
58 |
+
The model can be loaded with the `zero-shot-classification` pipeline like so:
|
59 |
+
|
60 |
+
```python
|
61 |
+
from transformers import pipeline
|
62 |
+
classifier = pipeline("zero-shot-classification",
|
63 |
+
model="joeddav/xlm-roberta-large-xnli")
|
64 |
+
```
|
65 |
+
|
66 |
+
You can then classify in any of the above languages. You can even pass the labels in one language and the sequence to
|
67 |
+
classify in another:
|
68 |
+
|
69 |
+
```python
|
70 |
+
# we will classify the Russian translation of, "Who are you voting for in 2020?"
|
71 |
+
sequence_to_classify = "За кого вы голосуете в 2020 году?"
|
72 |
+
# we can specify candidate labels in Russian or any other language above:
|
73 |
+
candidate_labels = ["Europe", "public health", "politics"]
|
74 |
+
classifier(sequence_to_classify, candidate_labels)
|
75 |
+
# {'labels': ['politics', 'Europe', 'public health'],
|
76 |
+
# 'scores': [0.9048484563827515, 0.05722189322113991, 0.03792969882488251],
|
77 |
+
# 'sequence': 'За кого вы голосуете в 2020 году?'}
|
78 |
+
```
|
79 |
+
|
80 |
+
The default hypothesis template is the English, `This text is {}`. If you are working strictly within one language, it
|
81 |
+
may be worthwhile to translate this to the language you are working with:
|
82 |
+
|
83 |
+
```python
|
84 |
+
sequence_to_classify = "¿A quién vas a votar en 2020?"
|
85 |
+
candidate_labels = ["Europa", "salud pública", "política"]
|
86 |
+
hypothesis_template = "Este ejemplo es {}."
|
87 |
+
classifier(sequence_to_classify, candidate_labels, hypothesis_template=hypothesis_template)
|
88 |
+
# {'labels': ['política', 'Europa', 'salud pública'],
|
89 |
+
# 'scores': [0.9109585881233215, 0.05954807624220848, 0.029493311420083046],
|
90 |
+
# 'sequence': '¿A quién vas a votar en 2020?'}
|
91 |
+
```
|
92 |
+
|
93 |
+
#### With manual PyTorch
|
94 |
+
|
95 |
+
```python
|
96 |
+
# pose sequence as a NLI premise and label as a hypothesis
|
97 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
98 |
+
nli_model = AutoModelForSequenceClassification.from_pretrained('joeddav/xlm-roberta-large-xnli')
|
99 |
+
tokenizer = AutoTokenizer.from_pretrained('joeddav/xlm-roberta-large-xnli')
|
100 |
+
|
101 |
+
premise = sequence
|
102 |
+
hypothesis = f'This example is {label}.'
|
103 |
+
|
104 |
+
# run through model pre-trained on MNLI
|
105 |
+
x = tokenizer.encode(premise, hypothesis, return_tensors='pt',
|
106 |
+
truncation_strategy='only_first')
|
107 |
+
logits = nli_model(x.to(device))[0]
|
108 |
+
|
109 |
+
# we throw away "neutral" (dim 1) and take the probability of
|
110 |
+
# "entailment" (2) as the probability of the label being true
|
111 |
+
entail_contradiction_logits = logits[:,[0,2]]
|
112 |
+
probs = entail_contradiction_logits.softmax(dim=1)
|
113 |
+
prob_label_is_true = probs[:,1]
|
114 |
+
```
|
115 |
+
|
116 |
+
## Training
|
117 |
+
|
118 |
+
This model was pre-trained on set of 100 languages, as described in
|
119 |
+
[the original paper](https://arxiv.org/abs/1911.02116). It was then fine-tuned on the task of NLI on the concatenated
|
120 |
+
MNLI train set and the XNLI validation and test sets. Finally, it was trained for one additional epoch on only XNLI
|
121 |
+
data where the translations for the premise and hypothesis are shuffled such that the premise and hypothesis for
|
122 |
+
each example come from the same original English example but the premise and hypothesis are of different languages.
|