File size: 3,420 Bytes
6e9eeeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
license: mit
base_model: HuggingFaceH4/zephyr-7b-beta
tags:
- generated_from_trainer
model-index:
- name: models
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# models

This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7368

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 40
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.9828        | 0.02  | 1    | 1.0330          |
| 1.1538        | 0.03  | 2    | 1.0256          |
| 0.9734        | 0.05  | 3    | 1.0120          |
| 1.0574        | 0.07  | 4    | 0.9942          |
| 0.9797        | 0.09  | 5    | 0.9755          |
| 0.9399        | 0.1   | 6    | 0.9580          |
| 1.0294        | 0.12  | 7    | 0.9434          |
| 0.7965        | 0.14  | 8    | 0.9318          |
| 0.7741        | 0.16  | 9    | 0.9236          |
| 0.8252        | 0.17  | 10   | 0.9178          |
| 0.8478        | 0.19  | 11   | 0.9135          |
| 0.9641        | 0.21  | 12   | 0.9068          |
| 0.9073        | 0.22  | 13   | 0.8980          |
| 0.9682        | 0.24  | 14   | 0.8877          |
| 0.8794        | 0.26  | 15   | 0.8774          |
| 0.7602        | 0.28  | 16   | 0.8690          |
| 0.9019        | 0.29  | 17   | 0.8611          |
| 0.8619        | 0.31  | 18   | 0.8547          |
| 0.8195        | 0.33  | 19   | 0.8484          |
| 0.9562        | 0.34  | 20   | 0.8418          |
| 0.7822        | 0.36  | 21   | 0.8366          |
| 0.767         | 0.38  | 22   | 0.8308          |
| 0.9024        | 0.4   | 23   | 0.8242          |
| 0.8596        | 0.41  | 24   | 0.8183          |
| 0.8424        | 0.43  | 25   | 0.8123          |
| 0.7396        | 0.45  | 26   | 0.8059          |
| 0.7742        | 0.47  | 27   | 0.7999          |
| 0.7007        | 0.48  | 28   | 0.7943          |
| 0.6915        | 0.5   | 29   | 0.7890          |
| 0.7054        | 0.52  | 30   | 0.7836          |
| 0.7622        | 0.53  | 31   | 0.7785          |
| 0.6493        | 0.55  | 32   | 0.7720          |
| 0.6106        | 0.57  | 33   | 0.7650          |
| 0.7534        | 0.59  | 34   | 0.7583          |
| 0.7065        | 0.6   | 35   | 0.7532          |
| 0.8823        | 0.62  | 36   | 0.7472          |
| 0.7082        | 0.64  | 37   | 0.7424          |
| 0.7292        | 0.66  | 38   | 0.7405          |
| 0.8142        | 0.67  | 39   | 0.7390          |
| 0.6079        | 0.69  | 40   | 0.7368          |


### Framework versions

- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0