ppo-LunarLander / config.json
joelb's picture
Follow Tutorial
695c4a3 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c410061b520>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c410061b5b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c410061b640>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c410061b6d0>", "_build": "<function ActorCriticPolicy._build at 0x7c410061b760>", "forward": "<function ActorCriticPolicy.forward at 0x7c410061b7f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c410061b880>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c410061b910>", "_predict": "<function ActorCriticPolicy._predict at 0x7c410061b9a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c410061ba30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c410061bac0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c410061bb50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c41007b5340>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1731093866580058641, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIC09D3KGRQ/SqadvJ2DCb/fO449aK5WvQAAAAAAAAAAALznO8KkBz9IgOm7zSMBvzieiDsaxxU9AAAAAAAAAAAG1mc+KUO2PtXzkr7pq7++Z+QpPY+8BL4AAAAAAAAAAM01C764Xda7qzttvZMC0rskWTE9+y6xPAAAgD8AAIA/QLH2PTa0SLy3co09waLSPCWpqb2Y1aY9AACAPwAAgD/mASI97hf8PaHIGb07yYO+CvXgOFL0WLwAAAAAAAAAAEAjOj6bK4u8DjqDO7ywx7lSffe9uTG4ugAAgD8AAIA/8+VGPiH+kbw0Qha7t2ZROedF/L3cmkA6AACAPwAAgD8zEKU9g9RYvBpmxr3eBVc7ipPAPTPXT7wAAAAAAACAP1V9t76DYyE/edjIvWum/76CDTa+wBdYPQAAAAAAAAAAsxJSvkWM/zxWnQ8+Dt0IvmkUW7x6Q6Q8AAAAAAAAAABNFVk99mADug5I07hvu8yzrGJ+O1hw/TcAAIA/AACAPyCwQT5Ohsy8uo5Cuj7JtjjvijW+lkOEOQAAgD8AAIA/5pJKPaFYJj5jUU++Sz2Hvh3gGr2gtM28AAAAAAAAAABabQE+HIhHPRgRCr5zbUe+moKEvKGfRr0AAAAAAAAAAOBODz4nl48+NrtbvlBBdr6DbFA7FlrcvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIiM/t6X0KMAWyUS8aMAXSUR0CWr0bnoxHodX2UKGgGR0BkCUFnqVyFaAdN9gFoCEdAlrB0LpiZv3V9lChoBkdAcehkona37WgHS9loCEdAlrDRttQ9BHV9lChoBkdAbrnVXFLnLmgHS91oCEdAlrDlkhA4XHV9lChoBkdAcdfHww0wamgHS/doCEdAlrEbeyiVSnV9lChoBkdAcITBxPwd82gHTTkBaAhHQJaxONWEK3N1fZQoaAZHQHBaVF+d9UloB0veaAhHQJaxhTbWVeN1fZQoaAZHQG/ydAxBVuJoB0vnaAhHQJaxkNiH6/J1fZQoaAZHQHGXx3zMA3loB0vraAhHQJayGo0hvBJ1fZQoaAZHQHD6QxN7BwdoB0vzaAhHQJayliw0O3F1fZQoaAZHQHLhjmOlwcZoB0vnaAhHQJazapn6Eal1fZQoaAZHQHMYAEQoTf1oB0vhaAhHQJaztY/3WWh1fZQoaAZHQHD3Pt2LYPJoB0vLaAhHQJa0dtoBaLZ1fZQoaAZHQG5J8oQWepZoB0vhaAhHQJa0/ReC04R1fZQoaAZHQHGhG6kIomZoB0uzaAhHQJa0+VVxS511fZQoaAZHQHHmOYx+KCRoB00IAWgIR0CWtUffGdZrdX2UKGgGR0BwCcCwKSgXaAdLzmgIR0CWtvyJbdJrdX2UKGgGR0ByQ0Kv3ai9aAdL62gIR0CWtwR8+iaidX2UKGgGR0BwAiK1og3caAdL7GgIR0CWt468g6ltdX2UKGgGR0BuC1m16Vt5aAdL1mgIR0CWuATxXnyNdX2UKGgGR0ByJRWxQizLaAdNIgFoCEdAlrjVKGtZFHV9lChoBkdAb26wPAfuC2gHS9loCEdAlrnFLamGd3V9lChoBkdAbe3im2sq8WgHS9NoCEdAlrn1YhdMTXV9lChoBkdASypdD6WPcWgHS65oCEdAlrqwosqaw3V9lChoBkdAbjBR8c+7lWgHS9BoCEdAlrtk+xGDtnV9lChoBkdAcU6DEm6XjWgHS+doCEdAlrt/82rGR3V9lChoBkdAboeKXOW0JGgHS+doCEdAlrwR4dIXj3V9lChoBkdAU4Sw1R+BpmgHS7RoCEdAlrySYkVvdnV9lChoBkdAb5hJ8OTaCmgHS95oCEdAlr3evt+kQHV9lChoBkdAblv/Ue+23WgHS9RoCEdAlr4Mk+otMHV9lChoBkdAb0jSde6ZpmgHS9NoCEdAlr6UCq6vq3V9lChoBkdAbOsbz9S/CmgHTdMBaAhHQJa/UdilSCR1fZQoaAZHQHH/hS9/SYxoB0vXaAhHQJa/7ixVyWB1fZQoaAZHQHA4PHT7VKBoB0u/aAhHQJbAKkfs/pt1fZQoaAZHQG/SyIpH7P9oB03AAWgIR0CWwGZXdTHbdX2UKGgGR0BtoUhib2DhaAdNAgJoCEdAlsCRf8dgfHV9lChoBkdAbnbSc9W6smgHS8loCEdAlsJ0Od5IH3V9lChoBkdAYUAZTAFgUmgHTegDaAhHQJbC8HX2/SJ1fZQoaAZHQG4T1hCtzS1oB0vVaAhHQJbDCpT/ACZ1fZQoaAZHQHHQLFS88LdoB0v2aAhHQJbDTASFoL51fZQoaAZHQG9RvhybQTpoB00bAWgIR0CWw7tLcsUZdX2UKGgGR0BwlWKZUkv9aAdL4WgIR0CWxB/u9eyBdX2UKGgGR0BJW4uK4x1xaAdLemgIR0CWxGIvrWy1dX2UKGgGR0BwLAb6xgRcaAdL42gIR0CWxMqiXY16dX2UKGgGR0BxT8EW69TQaAdLzWgIR0CWxkkdFOO9dX2UKGgGR0ByoCCe2/i6aAdL0mgIR0CWxxvze40/dX2UKGgGR0BykozWPLgXaAdL/GgIR0CWx5HZbpu/dX2UKGgGR0BwIH/Ot4iYaAdL8WgIR0CWyUCAc1fmdX2UKGgGR0BxRJv5xiobaAdL6WgIR0CWyVlUIcBEdX2UKGgGR0BxESelKsdUaAdLw2gIR0CWyetPHktFdX2UKGgGR0BvgW5e7cwhaAdNPAFoCEdAlsoBcmjTKHV9lChoBkdAch2qgh8pkWgHTQwBaAhHQJbKmFyq+8J1fZQoaAZHQHBMSWqtHQRoB0vXaAhHQJbLRoTPBzp1fZQoaAZHQG56CJXQtz1oB0vLaAhHQJbLfyLAHml1fZQoaAZHQHGISC4BmwtoB00AAWgIR0CWzKBMi8nNdX2UKGgGR0Bx8sDifg76aAdL72gIR0CWzNA7gbZOdX2UKGgGR0BwORtMwlByaAdL6mgIR0CWzN+Yc/+sdX2UKGgGR0ByfeCK77KraAdL92gIR0CWzYJ8fFJhdX2UKGgGR0BydkqPOpsHaAdL2WgIR0CWzcWKdhAodX2UKGgGR0Bxn0Xl8w6AaAdLwmgIR0CWzgf4yoGZdX2UKGgGR0BzNC8Yht+DaAdNVQFoCEdAls6RJI1+AnV9lChoBkdAX+xffGdZq2gHTegDaAhHQJbOx40Mw111fZQoaAZHQHDVt1ZDArRoB0vWaAhHQJbPg1Muez51fZQoaAZHQHJRPqs2ehBoB0vqaAhHQJbQIjv/io91fZQoaAZHQG4aRODaoMtoB0vraAhHQJbQlJnQID51fZQoaAZHQHLQTRMN+b5oB0vuaAhHQJbQmxUvPC51fZQoaAZHQHCh6CYkVvdoB0voaAhHQJbQ3r7fpEB1fZQoaAZHQHGP/zFuNxVoB0vRaAhHQJbQ+eUY8+11fZQoaAZHQHDrPe1rqMZoB0vcaAhHQJbRCldkauR1fZQoaAZHQHBigz544ZNoB0vZaAhHQJbSRIy0rsl1fZQoaAZHQHK3sX3xnWdoB0vZaAhHQJbTBSk0rLB1fZQoaAZHQHALF9roGINoB0vOaAhHQJbTAPe54GF1fZQoaAZHQHGg8baRISVoB0v4aAhHQJbUkRtgrpd1fZQoaAZHQGOyLJ0W/JxoB03OAWgIR0CW1NQm/nGLdX2UKGgGR0BxdSKJl8PXaAdLyWgIR0CW1if6GgzydX2UKGgGR0BxedoPCl7/aAdL32gIR0CW11emelKsdX2UKGgGR0BscwMpgCwKaAdNOwFoCEdAltdq37UG3XV9lChoBkdAcm+b6guh9WgHS95oCEdAltdyKR+z+nV9lChoBkdAcI/UAT7EYWgHS/BoCEdAlteOCK77K3V9lChoBkdAcTOQYDTz/mgHS+1oCEdAltf9Gd7OV3V9lChoBkdAcIavg3tKI2gHTTUBaAhHQJbYbVlPJq91fZQoaAZHQHEPjnV5KOFoB0vMaAhHQJbYkwHqu8t1fZQoaAZHQGp7/R/mT1VoB000AWgIR0CW2QsoUi6hdX2UKGgGR0Bsg9Jg9eQdaAdNcAFoCEdAltk3Upd8iXV9lChoBkdAbiBfqoqCpWgHS9RoCEdAltl6F/QSjHV9lChoBkdAcpRschkiEGgHS9xoCEdAltmsiKR+0HV9lChoBkdAcT8f7JnxrmgHS9FoCEdAltrWvr4WUXV9lChoBkdAcC48gpz90mgHS91oCEdAltxhL0z0pXV9lChoBkdAcbfhaTwDvGgHTSQBaAhHQJbc7Ks+3Yt1fZQoaAZHQHFTDzyz5XVoB0vUaAhHQJbdLLJSzgN1fZQoaAZHQG4Qr8iwB5poB0vUaAhHQJbdRV3ljmV1fZQoaAZHQHDXhTS9du5oB0vraAhHQJbduuPmxMZ1fZQoaAZHQHBCTj/+85FoB0vXaAhHQJbdwMjNY8x1fZQoaAZHQHBdzLr5ZbJoB0vSaAhHQJbewtWdVed1fZQoaAZHQHB9puQ6p5xoB0vuaAhHQJbewQcxTKl1fZQoaAZHQHDGdiUgSvloB0v3aAhHQJbfIdKdxyZ1fZQoaAZHQG+oIVmBe5ZoB0veaAhHQJbfYF5fMOh1fZQoaAZHQDBZmJ3xFy9oB0unaAhHQJbfdBv73wl1fZQoaAZHQHDRCPhhpg1oB0vzaAhHQJbfeOZLIxR1fZQoaAZHQHF3orjHXEtoB0vlaAhHQJbfwUtZmqZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}