Joeran Bosma
commited on
Commit
•
2739a45
1
Parent(s):
25a9f1f
Initial release
Browse files- README.md +106 -3
- all_results.json +15 -0
- config.json +27 -0
- eval_results.json +10 -0
- merges.txt +0 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +0 -0
- tokenizer_config.json +22 -0
- train_results.json +8 -0
- trainer_state.json +1327 -0
- training_args.bin +3 -0
- vocab.json +0 -0
README.md
CHANGED
@@ -1,3 +1,106 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-nc-sa-4.0
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
---
|
4 |
+
|
5 |
+
# DRAGON RoBERTa large domain-specific
|
6 |
+
|
7 |
+
Pretrained model on Dutch clinical reports using a masked language modeling (MLM) objective. It was introduced in [this](#pending) paper. The model was pretrained using domain-specific data (i.e., clinical reports) from scratch. The architecture is the same as [`xlm-roberta-large`](https://huggingface.co/xlm-roberta-large) from HuggingFace. The tokenizer was fitted to the dataset of Dutch medical reports, using the same settings for the tokenizer as [`roberta-base`](https://huggingface.co/FacebookAI/roberta-base).
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
## Model description
|
12 |
+
RoBERTa is a transformers model that was pretrained on a large corpus of Dutch clinical reports in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labeling them in any way with an automatic process to generate inputs and labels from those texts.
|
13 |
+
|
14 |
+
This way, the model learns an inner representation of the Dutch medical language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled reports, for instance, you can train a standard classifier using the features produced by the BERT model as inputs.
|
15 |
+
|
16 |
+
## Model variations
|
17 |
+
Multiple architectures were pretrained for the DRAGON challenge.
|
18 |
+
|
19 |
+
| Model | #params | Language |
|
20 |
+
|------------------------|--------------------------------|-------|
|
21 |
+
| [`joeranbosma/dragon-bert-base-mixed-domain`](https://huggingface.co/joeranbosma/dragon-bert-base-mixed-domain) | 109M | Dutch → Dutch |
|
22 |
+
| [`joeranbosma/dragon-roberta-base-mixed-domain`](https://huggingface.co/joeranbosma/dragon-roberta-base-mixed-domain) | 278M | Multiple → Dutch |
|
23 |
+
| [`joeranbosma/dragon-roberta-large-mixed-domain`](https://huggingface.co/joeranbosma/dragon-roberta-large-mixed-domain) | 560M | Multiple → Dutch |
|
24 |
+
| [`joeranbosma/dragon-longformer-base-mixed-domain`](https://huggingface.co/joeranbosma/dragon-longformer-base-mixed-domain) | 149M | English → Dutch |
|
25 |
+
| [`joeranbosma/dragon-longformer-large-mixed-domain`](https://huggingface.co/joeranbosma/dragon-longformer-large-mixed-domain) | 435M | English → Dutch |
|
26 |
+
| [`joeranbosma/dragon-bert-base-domain-specific`](https://huggingface.co/joeranbosma/dragon-bert-base-domain-specific) | 109M | Dutch |
|
27 |
+
| [`joeranbosma/dragon-roberta-base-domain-specific`](https://huggingface.co/joeranbosma/dragon-roberta-base-domain-specific) | 278M | Dutch |
|
28 |
+
| [`joeranbosma/dragon-roberta-large-domain-specific`](https://huggingface.co/joeranbosma/dragon-roberta-large-domain-specific) | 560M | Dutch |
|
29 |
+
| [`joeranbosma/dragon-longformer-base-domain-specific`](https://huggingface.co/joeranbosma/dragon-longformer-base-domain-specific) | 149M | Dutch |
|
30 |
+
| [`joeranbosma/dragon-longformer-large-domain-specific`](https://huggingface.co/joeranbosma/dragon-longformer-large-domain-specific) | 435M | Dutch |
|
31 |
+
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task.
|
35 |
+
|
36 |
+
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole text (e.g., a clinical report) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2.
|
37 |
+
|
38 |
+
## How to use
|
39 |
+
You can use this model directly with a pipeline for masked language modeling:
|
40 |
+
|
41 |
+
```python
|
42 |
+
from transformers import pipeline
|
43 |
+
unmasker = pipeline("fill-mask", model="joeranbosma/dragon-roberta-large-domain-specific")
|
44 |
+
unmasker("Dit onderzoek geen aanwijzingen voor significant carcinoom. PIRADS <mask>.")
|
45 |
+
```
|
46 |
+
|
47 |
+
Here is how to use this model to get the features of a given text in PyTorch:
|
48 |
+
|
49 |
+
```python
|
50 |
+
from transformers import AutoTokenizer, AutoModel
|
51 |
+
tokenizer = AutoTokenizer.from_pretrained("joeranbosma/dragon-roberta-large-domain-specific")
|
52 |
+
model = AutoModel.from_pretrained("joeranbosma/dragon-roberta-large-domain-specific")
|
53 |
+
text = "Replace me by any text you'd like."
|
54 |
+
encoded_input = tokenizer(text, return_tensors="pt")
|
55 |
+
output = model(**encoded_input)
|
56 |
+
```
|
57 |
+
|
58 |
+
## Limitations and bias
|
59 |
+
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model.
|
60 |
+
|
61 |
+
## Training data
|
62 |
+
For pretraining, 4,333,201 clinical reports (466,351 consecutive patients) were selected from Ziekenhuisgroep Twente from patients with a diagnostic or interventional visit between 13 July 2000 and 25 April 2023. 180,439 duplicate clinical reports (179,808 patients) were excluded, resulting in 4,152,762 included reports (463,692 patients). These reports were split into training (80%, 3,322,209 reports), validation (10%, 415,276 reports), and testing (10%, 415,277 reports). The testing reports were set aside for future analysis and are not used for pretraining.
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Pretraining
|
67 |
+
The model was pretrained using masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then runs the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally masks the future tokens. It allows the model to learn a bidirectional representation of the sentence.
|
68 |
+
|
69 |
+
The details of the masking procedure for each sentence are the following:
|
70 |
+
- 15% of the tokens are masked.
|
71 |
+
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
|
72 |
+
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
|
73 |
+
- In the 10% remaining cases, the masked tokens are left as is.
|
74 |
+
|
75 |
+
The HuggingFace implementation was used for pretraining: [`run_mlm.py`](https://github.com/huggingface/transformers/blob/7c6ec195adbfcd22cb6baeee64dd3c24a4b80c74/examples/pytorch/language-modeling/run_mlm.py).
|
76 |
+
|
77 |
+
### Pretraining hyperparameters
|
78 |
+
|
79 |
+
The following hyperparameters were used during pretraining:
|
80 |
+
- `learning_rate`: 1e-4
|
81 |
+
- `train_batch_size`: 8
|
82 |
+
- `eval_batch_size`: 8
|
83 |
+
- `seed`: 42
|
84 |
+
- `gradient_accumulation_steps`: 32
|
85 |
+
- `total_train_batch_size`: 256
|
86 |
+
- `optimizer`: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
87 |
+
- `lr_scheduler_type`: linear
|
88 |
+
- `num_epochs`: 10.0
|
89 |
+
- `max_seq_length`: 512
|
90 |
+
|
91 |
+
### Framework versions
|
92 |
+
|
93 |
+
- Transformers 4.29.0.dev0
|
94 |
+
- Pytorch 2.0.0+cu117
|
95 |
+
- Datasets 2.11.0
|
96 |
+
- Tokenizers 0.13.3
|
97 |
+
|
98 |
+
## Evaluation results
|
99 |
+
|
100 |
+
Pending evaluation on the DRAGON benchmark.
|
101 |
+
|
102 |
+
### BibTeX entry and citation info
|
103 |
+
|
104 |
+
```bibtex
|
105 |
+
@article{PENDING}
|
106 |
+
```
|
all_results.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"eval_accuracy": 0.8176872903958383,
|
4 |
+
"eval_loss": 0.7863156199455261,
|
5 |
+
"eval_runtime": 4180.1874,
|
6 |
+
"eval_samples": 103187,
|
7 |
+
"eval_samples_per_second": 24.685,
|
8 |
+
"eval_steps_per_second": 3.086,
|
9 |
+
"perplexity": 2.19529321323568,
|
10 |
+
"train_loss": 1.915723304985473,
|
11 |
+
"train_runtime": 1372706.2896,
|
12 |
+
"train_samples": 824387,
|
13 |
+
"train_samples_per_second": 6.006,
|
14 |
+
"train_steps_per_second": 0.023
|
15 |
+
}
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "roberta-large",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaForMaskedLM"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"position_embedding_type": "absolute",
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.29.0.dev0",
|
24 |
+
"type_vocab_size": 1,
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 50265
|
27 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"eval_accuracy": 0.8176872903958383,
|
4 |
+
"eval_loss": 0.7863156199455261,
|
5 |
+
"eval_runtime": 4180.1874,
|
6 |
+
"eval_samples": 103187,
|
7 |
+
"eval_samples_per_second": 24.685,
|
8 |
+
"eval_steps_per_second": 3.086,
|
9 |
+
"perplexity": 2.19529321323568
|
10 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fed4ee103e6fb78e381436d1582c8dcab0299d5522f37fe7b58338bfc8638a83
|
3 |
+
size 1421788537
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": "<s>",
|
4 |
+
"clean_up_tokenization_spaces": true,
|
5 |
+
"cls_token": "<s>",
|
6 |
+
"eos_token": "</s>",
|
7 |
+
"errors": "replace",
|
8 |
+
"mask_token": {
|
9 |
+
"__type": "AddedToken",
|
10 |
+
"content": "<mask>",
|
11 |
+
"lstrip": true,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"model_max_length": 512,
|
17 |
+
"pad_token": "<pad>",
|
18 |
+
"sep_token": "</s>",
|
19 |
+
"tokenizer_class": "RobertaTokenizer",
|
20 |
+
"trim_offsets": true,
|
21 |
+
"unk_token": "<unk>"
|
22 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"train_loss": 1.915723304985473,
|
4 |
+
"train_runtime": 1372706.2896,
|
5 |
+
"train_samples": 824387,
|
6 |
+
"train_samples_per_second": 6.006,
|
7 |
+
"train_steps_per_second": 0.023
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,1327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.7846992611885071,
|
3 |
+
"best_model_checkpoint": "/output/zgt-roberta-large-finetuned-Gu21schedule-BS256-10ep/checkpoint-31926",
|
4 |
+
"epoch": 9.99912662907937,
|
5 |
+
"global_step": 32200,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.1,
|
12 |
+
"eval_accuracy": 0.12095168799057326,
|
13 |
+
"eval_loss": 6.969939231872559,
|
14 |
+
"eval_runtime": 4175.606,
|
15 |
+
"eval_samples_per_second": 24.712,
|
16 |
+
"eval_steps_per_second": 3.089,
|
17 |
+
"step": 313
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.16,
|
21 |
+
"learning_rate": 1.5527950310559007e-05,
|
22 |
+
"loss": 7.8141,
|
23 |
+
"step": 500
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.19,
|
27 |
+
"eval_accuracy": 0.1524057089518688,
|
28 |
+
"eval_loss": 6.233978271484375,
|
29 |
+
"eval_runtime": 4177.4061,
|
30 |
+
"eval_samples_per_second": 24.701,
|
31 |
+
"eval_steps_per_second": 3.088,
|
32 |
+
"step": 626
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.29,
|
36 |
+
"eval_accuracy": 0.16394060788435189,
|
37 |
+
"eval_loss": 6.122518539428711,
|
38 |
+
"eval_runtime": 4179.7801,
|
39 |
+
"eval_samples_per_second": 24.687,
|
40 |
+
"eval_steps_per_second": 3.086,
|
41 |
+
"step": 939
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"epoch": 0.31,
|
45 |
+
"learning_rate": 3.1055900621118014e-05,
|
46 |
+
"loss": 6.1501,
|
47 |
+
"step": 1000
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"epoch": 0.39,
|
51 |
+
"eval_accuracy": 0.16842972332423103,
|
52 |
+
"eval_loss": 6.045305252075195,
|
53 |
+
"eval_runtime": 4182.1677,
|
54 |
+
"eval_samples_per_second": 24.673,
|
55 |
+
"eval_steps_per_second": 3.084,
|
56 |
+
"step": 1252
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.47,
|
60 |
+
"learning_rate": 4.658385093167702e-05,
|
61 |
+
"loss": 6.0737,
|
62 |
+
"step": 1500
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.49,
|
66 |
+
"eval_accuracy": 0.16725142510331475,
|
67 |
+
"eval_loss": 5.987020969390869,
|
68 |
+
"eval_runtime": 4177.226,
|
69 |
+
"eval_samples_per_second": 24.702,
|
70 |
+
"eval_steps_per_second": 3.088,
|
71 |
+
"step": 1565
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"epoch": 0.58,
|
75 |
+
"eval_accuracy": 0.17195286451581493,
|
76 |
+
"eval_loss": 5.9314141273498535,
|
77 |
+
"eval_runtime": 4165.2923,
|
78 |
+
"eval_samples_per_second": 24.773,
|
79 |
+
"eval_steps_per_second": 3.097,
|
80 |
+
"step": 1878
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.62,
|
84 |
+
"learning_rate": 6.211180124223603e-05,
|
85 |
+
"loss": 5.9753,
|
86 |
+
"step": 2000
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.68,
|
90 |
+
"eval_accuracy": 0.17336381929439706,
|
91 |
+
"eval_loss": 5.887312412261963,
|
92 |
+
"eval_runtime": 4179.8742,
|
93 |
+
"eval_samples_per_second": 24.687,
|
94 |
+
"eval_steps_per_second": 3.086,
|
95 |
+
"step": 2191
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"epoch": 0.78,
|
99 |
+
"learning_rate": 7.763975155279503e-05,
|
100 |
+
"loss": 5.9008,
|
101 |
+
"step": 2500
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.78,
|
105 |
+
"eval_accuracy": 0.1737213537890283,
|
106 |
+
"eval_loss": 5.851128101348877,
|
107 |
+
"eval_runtime": 4181.0014,
|
108 |
+
"eval_samples_per_second": 24.68,
|
109 |
+
"eval_steps_per_second": 3.085,
|
110 |
+
"step": 2504
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.87,
|
114 |
+
"eval_accuracy": 0.1730111369884377,
|
115 |
+
"eval_loss": 5.819331645965576,
|
116 |
+
"eval_runtime": 4182.8162,
|
117 |
+
"eval_samples_per_second": 24.669,
|
118 |
+
"eval_steps_per_second": 3.084,
|
119 |
+
"step": 2817
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"epoch": 0.93,
|
123 |
+
"learning_rate": 9.316770186335404e-05,
|
124 |
+
"loss": 5.8379,
|
125 |
+
"step": 3000
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"epoch": 0.97,
|
129 |
+
"eval_accuracy": 0.17577215201939525,
|
130 |
+
"eval_loss": 5.785292625427246,
|
131 |
+
"eval_runtime": 4184.6612,
|
132 |
+
"eval_samples_per_second": 24.658,
|
133 |
+
"eval_steps_per_second": 3.082,
|
134 |
+
"step": 3130
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 1.07,
|
138 |
+
"eval_accuracy": 0.1759501659892642,
|
139 |
+
"eval_loss": 5.762609481811523,
|
140 |
+
"eval_runtime": 4182.8465,
|
141 |
+
"eval_samples_per_second": 24.669,
|
142 |
+
"eval_steps_per_second": 3.084,
|
143 |
+
"step": 3443
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 1.09,
|
147 |
+
"learning_rate": 9.903381642512077e-05,
|
148 |
+
"loss": 5.7885,
|
149 |
+
"step": 3500
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 1.17,
|
153 |
+
"eval_accuracy": 0.17622262356212584,
|
154 |
+
"eval_loss": 5.739773273468018,
|
155 |
+
"eval_runtime": 4170.2068,
|
156 |
+
"eval_samples_per_second": 24.744,
|
157 |
+
"eval_steps_per_second": 3.093,
|
158 |
+
"step": 3756
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 1.24,
|
162 |
+
"learning_rate": 9.730848861283644e-05,
|
163 |
+
"loss": 5.7464,
|
164 |
+
"step": 4000
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 1.26,
|
168 |
+
"eval_accuracy": 0.1766708743216783,
|
169 |
+
"eval_loss": 5.720291614532471,
|
170 |
+
"eval_runtime": 4172.2987,
|
171 |
+
"eval_samples_per_second": 24.731,
|
172 |
+
"eval_steps_per_second": 3.092,
|
173 |
+
"step": 4069
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"epoch": 1.36,
|
177 |
+
"eval_accuracy": 0.17642257605364067,
|
178 |
+
"eval_loss": 5.696093559265137,
|
179 |
+
"eval_runtime": 4172.9563,
|
180 |
+
"eval_samples_per_second": 24.728,
|
181 |
+
"eval_steps_per_second": 3.091,
|
182 |
+
"step": 4382
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 1.4,
|
186 |
+
"learning_rate": 9.558316080055211e-05,
|
187 |
+
"loss": 5.7149,
|
188 |
+
"step": 4500
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 1.46,
|
192 |
+
"eval_accuracy": 0.17737878845804067,
|
193 |
+
"eval_loss": 5.683297634124756,
|
194 |
+
"eval_runtime": 4185.0558,
|
195 |
+
"eval_samples_per_second": 24.656,
|
196 |
+
"eval_steps_per_second": 3.082,
|
197 |
+
"step": 4695
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"epoch": 1.55,
|
201 |
+
"learning_rate": 9.385783298826778e-05,
|
202 |
+
"loss": 5.6885,
|
203 |
+
"step": 5000
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"epoch": 1.56,
|
207 |
+
"eval_accuracy": 0.1773234355905989,
|
208 |
+
"eval_loss": 5.670944690704346,
|
209 |
+
"eval_runtime": 4184.0795,
|
210 |
+
"eval_samples_per_second": 24.662,
|
211 |
+
"eval_steps_per_second": 3.083,
|
212 |
+
"step": 5008
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 1.65,
|
216 |
+
"eval_accuracy": 0.1774909217337557,
|
217 |
+
"eval_loss": 5.6566619873046875,
|
218 |
+
"eval_runtime": 4185.5299,
|
219 |
+
"eval_samples_per_second": 24.653,
|
220 |
+
"eval_steps_per_second": 3.082,
|
221 |
+
"step": 5321
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 1.71,
|
225 |
+
"learning_rate": 9.213250517598345e-05,
|
226 |
+
"loss": 5.666,
|
227 |
+
"step": 5500
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 1.75,
|
231 |
+
"eval_accuracy": 0.17712345558640866,
|
232 |
+
"eval_loss": 5.647720813751221,
|
233 |
+
"eval_runtime": 4178.6309,
|
234 |
+
"eval_samples_per_second": 24.694,
|
235 |
+
"eval_steps_per_second": 3.087,
|
236 |
+
"step": 5634
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 1.85,
|
240 |
+
"eval_accuracy": 0.1778983102903151,
|
241 |
+
"eval_loss": 5.632648944854736,
|
242 |
+
"eval_runtime": 4179.5279,
|
243 |
+
"eval_samples_per_second": 24.689,
|
244 |
+
"eval_steps_per_second": 3.086,
|
245 |
+
"step": 5947
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"epoch": 1.86,
|
249 |
+
"learning_rate": 9.04071773636991e-05,
|
250 |
+
"loss": 5.6458,
|
251 |
+
"step": 6000
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"epoch": 1.94,
|
255 |
+
"eval_accuracy": 0.1767171879623295,
|
256 |
+
"eval_loss": 5.626438140869141,
|
257 |
+
"eval_runtime": 4166.358,
|
258 |
+
"eval_samples_per_second": 24.767,
|
259 |
+
"eval_steps_per_second": 3.096,
|
260 |
+
"step": 6260
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 2.02,
|
264 |
+
"learning_rate": 8.868184955141477e-05,
|
265 |
+
"loss": 5.6293,
|
266 |
+
"step": 6500
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 2.04,
|
270 |
+
"eval_accuracy": 0.18033812690505616,
|
271 |
+
"eval_loss": 5.371770858764648,
|
272 |
+
"eval_runtime": 4187.0608,
|
273 |
+
"eval_samples_per_second": 24.644,
|
274 |
+
"eval_steps_per_second": 3.081,
|
275 |
+
"step": 6573
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 2.14,
|
279 |
+
"eval_accuracy": 0.22889979190190532,
|
280 |
+
"eval_loss": 4.608296871185303,
|
281 |
+
"eval_runtime": 4185.2213,
|
282 |
+
"eval_samples_per_second": 24.655,
|
283 |
+
"eval_steps_per_second": 3.082,
|
284 |
+
"step": 6886
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 2.17,
|
288 |
+
"learning_rate": 8.695652173913044e-05,
|
289 |
+
"loss": 4.9883,
|
290 |
+
"step": 7000
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 2.24,
|
294 |
+
"eval_accuracy": 0.4614915191453084,
|
295 |
+
"eval_loss": 3.1735970973968506,
|
296 |
+
"eval_runtime": 4184.0355,
|
297 |
+
"eval_samples_per_second": 24.662,
|
298 |
+
"eval_steps_per_second": 3.083,
|
299 |
+
"step": 7199
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 2.33,
|
303 |
+
"learning_rate": 8.523119392684611e-05,
|
304 |
+
"loss": 3.2514,
|
305 |
+
"step": 7500
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 2.33,
|
309 |
+
"eval_accuracy": 0.5874539351791631,
|
310 |
+
"eval_loss": 2.3033511638641357,
|
311 |
+
"eval_runtime": 4180.5231,
|
312 |
+
"eval_samples_per_second": 24.683,
|
313 |
+
"eval_steps_per_second": 3.085,
|
314 |
+
"step": 7512
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 2.43,
|
318 |
+
"eval_accuracy": 0.6407011451986726,
|
319 |
+
"eval_loss": 1.915069818496704,
|
320 |
+
"eval_runtime": 4169.2257,
|
321 |
+
"eval_samples_per_second": 24.75,
|
322 |
+
"eval_steps_per_second": 3.094,
|
323 |
+
"step": 7825
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"epoch": 2.48,
|
327 |
+
"learning_rate": 8.350586611456177e-05,
|
328 |
+
"loss": 2.1211,
|
329 |
+
"step": 8000
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 2.53,
|
333 |
+
"eval_accuracy": 0.6671589447070213,
|
334 |
+
"eval_loss": 1.7218379974365234,
|
335 |
+
"eval_runtime": 4169.0733,
|
336 |
+
"eval_samples_per_second": 24.751,
|
337 |
+
"eval_steps_per_second": 3.094,
|
338 |
+
"step": 8138
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 2.62,
|
342 |
+
"eval_accuracy": 0.6849309492119486,
|
343 |
+
"eval_loss": 1.5953431129455566,
|
344 |
+
"eval_runtime": 4186.0587,
|
345 |
+
"eval_samples_per_second": 24.65,
|
346 |
+
"eval_steps_per_second": 3.081,
|
347 |
+
"step": 8451
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 2.64,
|
351 |
+
"learning_rate": 8.178053830227743e-05,
|
352 |
+
"loss": 1.7698,
|
353 |
+
"step": 8500
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 2.72,
|
357 |
+
"eval_accuracy": 0.6977890826334601,
|
358 |
+
"eval_loss": 1.5040490627288818,
|
359 |
+
"eval_runtime": 4187.545,
|
360 |
+
"eval_samples_per_second": 24.641,
|
361 |
+
"eval_steps_per_second": 3.08,
|
362 |
+
"step": 8764
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 2.79,
|
366 |
+
"learning_rate": 8.00552104899931e-05,
|
367 |
+
"loss": 1.5907,
|
368 |
+
"step": 9000
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 2.82,
|
372 |
+
"eval_accuracy": 0.7089186346832345,
|
373 |
+
"eval_loss": 1.4300199747085571,
|
374 |
+
"eval_runtime": 4186.4554,
|
375 |
+
"eval_samples_per_second": 24.648,
|
376 |
+
"eval_steps_per_second": 3.081,
|
377 |
+
"step": 9077
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 2.92,
|
381 |
+
"eval_accuracy": 0.716823811317197,
|
382 |
+
"eval_loss": 1.3781534433364868,
|
383 |
+
"eval_runtime": 4180.8901,
|
384 |
+
"eval_samples_per_second": 24.681,
|
385 |
+
"eval_steps_per_second": 3.085,
|
386 |
+
"step": 9390
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 2.95,
|
390 |
+
"learning_rate": 7.832988267770877e-05,
|
391 |
+
"loss": 1.4757,
|
392 |
+
"step": 9500
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 3.01,
|
396 |
+
"eval_accuracy": 0.7239590766169688,
|
397 |
+
"eval_loss": 1.3298745155334473,
|
398 |
+
"eval_runtime": 4169.3417,
|
399 |
+
"eval_samples_per_second": 24.749,
|
400 |
+
"eval_steps_per_second": 3.094,
|
401 |
+
"step": 9703
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 3.11,
|
405 |
+
"learning_rate": 7.660455486542444e-05,
|
406 |
+
"loss": 1.3919,
|
407 |
+
"step": 10000
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"epoch": 3.11,
|
411 |
+
"eval_accuracy": 0.7302072364465025,
|
412 |
+
"eval_loss": 1.2895771265029907,
|
413 |
+
"eval_runtime": 4181.4693,
|
414 |
+
"eval_samples_per_second": 24.677,
|
415 |
+
"eval_steps_per_second": 3.085,
|
416 |
+
"step": 10016
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 3.21,
|
420 |
+
"eval_accuracy": 0.7356055265010495,
|
421 |
+
"eval_loss": 1.25456964969635,
|
422 |
+
"eval_runtime": 4169.8649,
|
423 |
+
"eval_samples_per_second": 24.746,
|
424 |
+
"eval_steps_per_second": 3.093,
|
425 |
+
"step": 10329
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 3.26,
|
429 |
+
"learning_rate": 7.48792270531401e-05,
|
430 |
+
"loss": 1.328,
|
431 |
+
"step": 10500
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 3.3,
|
435 |
+
"eval_accuracy": 0.7406319445625766,
|
436 |
+
"eval_loss": 1.2240813970565796,
|
437 |
+
"eval_runtime": 4170.5091,
|
438 |
+
"eval_samples_per_second": 24.742,
|
439 |
+
"eval_steps_per_second": 3.093,
|
440 |
+
"step": 10642
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 3.4,
|
444 |
+
"eval_accuracy": 0.745277920243707,
|
445 |
+
"eval_loss": 1.1944962739944458,
|
446 |
+
"eval_runtime": 4174.7942,
|
447 |
+
"eval_samples_per_second": 24.717,
|
448 |
+
"eval_steps_per_second": 3.09,
|
449 |
+
"step": 10955
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 3.42,
|
453 |
+
"learning_rate": 7.315389924085577e-05,
|
454 |
+
"loss": 1.2782,
|
455 |
+
"step": 11000
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"epoch": 3.5,
|
459 |
+
"eval_accuracy": 0.7494278825432492,
|
460 |
+
"eval_loss": 1.1713906526565552,
|
461 |
+
"eval_runtime": 4174.964,
|
462 |
+
"eval_samples_per_second": 24.716,
|
463 |
+
"eval_steps_per_second": 3.09,
|
464 |
+
"step": 11268
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 3.57,
|
468 |
+
"learning_rate": 7.142857142857143e-05,
|
469 |
+
"loss": 1.2357,
|
470 |
+
"step": 11500
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 3.6,
|
474 |
+
"eval_accuracy": 0.7529051534363226,
|
475 |
+
"eval_loss": 1.1493370532989502,
|
476 |
+
"eval_runtime": 4169.6928,
|
477 |
+
"eval_samples_per_second": 24.747,
|
478 |
+
"eval_steps_per_second": 3.094,
|
479 |
+
"step": 11581
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 3.69,
|
483 |
+
"eval_accuracy": 0.7561643316896146,
|
484 |
+
"eval_loss": 1.1291333436965942,
|
485 |
+
"eval_runtime": 4170.8848,
|
486 |
+
"eval_samples_per_second": 24.74,
|
487 |
+
"eval_steps_per_second": 3.093,
|
488 |
+
"step": 11894
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 3.73,
|
492 |
+
"learning_rate": 6.970324361628709e-05,
|
493 |
+
"loss": 1.1986,
|
494 |
+
"step": 12000
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 3.79,
|
498 |
+
"eval_accuracy": 0.7596194578598549,
|
499 |
+
"eval_loss": 1.1110583543777466,
|
500 |
+
"eval_runtime": 4174.4741,
|
501 |
+
"eval_samples_per_second": 24.719,
|
502 |
+
"eval_steps_per_second": 3.09,
|
503 |
+
"step": 12207
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"epoch": 3.88,
|
507 |
+
"learning_rate": 6.797791580400277e-05,
|
508 |
+
"loss": 1.1673,
|
509 |
+
"step": 12500
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"epoch": 3.89,
|
513 |
+
"eval_accuracy": 0.7632696453538697,
|
514 |
+
"eval_loss": 1.091315507888794,
|
515 |
+
"eval_runtime": 4175.4221,
|
516 |
+
"eval_samples_per_second": 24.713,
|
517 |
+
"eval_steps_per_second": 3.089,
|
518 |
+
"step": 12520
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 3.99,
|
522 |
+
"eval_accuracy": 0.7654154836189226,
|
523 |
+
"eval_loss": 1.0766664743423462,
|
524 |
+
"eval_runtime": 4173.9192,
|
525 |
+
"eval_samples_per_second": 24.722,
|
526 |
+
"eval_steps_per_second": 3.09,
|
527 |
+
"step": 12833
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 4.04,
|
531 |
+
"learning_rate": 6.625258799171843e-05,
|
532 |
+
"loss": 1.1387,
|
533 |
+
"step": 13000
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"epoch": 4.08,
|
537 |
+
"eval_accuracy": 0.7681167597878354,
|
538 |
+
"eval_loss": 1.0629887580871582,
|
539 |
+
"eval_runtime": 4175.5718,
|
540 |
+
"eval_samples_per_second": 24.712,
|
541 |
+
"eval_steps_per_second": 3.089,
|
542 |
+
"step": 13146
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 4.18,
|
546 |
+
"eval_accuracy": 0.7707155612474973,
|
547 |
+
"eval_loss": 1.046230673789978,
|
548 |
+
"eval_runtime": 4175.7461,
|
549 |
+
"eval_samples_per_second": 24.711,
|
550 |
+
"eval_steps_per_second": 3.089,
|
551 |
+
"step": 13459
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"epoch": 4.19,
|
555 |
+
"learning_rate": 6.45272601794341e-05,
|
556 |
+
"loss": 1.1074,
|
557 |
+
"step": 13500
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"epoch": 4.28,
|
561 |
+
"eval_accuracy": 0.7731418474891986,
|
562 |
+
"eval_loss": 1.0337274074554443,
|
563 |
+
"eval_runtime": 4174.5,
|
564 |
+
"eval_samples_per_second": 24.718,
|
565 |
+
"eval_steps_per_second": 3.09,
|
566 |
+
"step": 13772
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 4.35,
|
570 |
+
"learning_rate": 6.280193236714976e-05,
|
571 |
+
"loss": 1.0893,
|
572 |
+
"step": 14000
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 4.37,
|
576 |
+
"eval_accuracy": 0.7748741121676294,
|
577 |
+
"eval_loss": 1.0239219665527344,
|
578 |
+
"eval_runtime": 4175.3624,
|
579 |
+
"eval_samples_per_second": 24.713,
|
580 |
+
"eval_steps_per_second": 3.089,
|
581 |
+
"step": 14085
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"epoch": 4.47,
|
585 |
+
"eval_accuracy": 0.7766543779252701,
|
586 |
+
"eval_loss": 1.014146089553833,
|
587 |
+
"eval_runtime": 4181.6475,
|
588 |
+
"eval_samples_per_second": 24.676,
|
589 |
+
"eval_steps_per_second": 3.085,
|
590 |
+
"step": 14398
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 4.5,
|
594 |
+
"learning_rate": 6.107660455486542e-05,
|
595 |
+
"loss": 1.0682,
|
596 |
+
"step": 14500
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 4.57,
|
600 |
+
"eval_accuracy": 0.7785186060053325,
|
601 |
+
"eval_loss": 1.0032246112823486,
|
602 |
+
"eval_runtime": 4180.7422,
|
603 |
+
"eval_samples_per_second": 24.682,
|
604 |
+
"eval_steps_per_second": 3.085,
|
605 |
+
"step": 14711
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 4.66,
|
609 |
+
"learning_rate": 5.9351276742581096e-05,
|
610 |
+
"loss": 1.0524,
|
611 |
+
"step": 15000
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 4.67,
|
615 |
+
"eval_accuracy": 0.7806327231861181,
|
616 |
+
"eval_loss": 0.9907068014144897,
|
617 |
+
"eval_runtime": 4180.8503,
|
618 |
+
"eval_samples_per_second": 24.681,
|
619 |
+
"eval_steps_per_second": 3.085,
|
620 |
+
"step": 15024
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 4.76,
|
624 |
+
"eval_accuracy": 0.7826726152932884,
|
625 |
+
"eval_loss": 0.9796966910362244,
|
626 |
+
"eval_runtime": 4176.9966,
|
627 |
+
"eval_samples_per_second": 24.704,
|
628 |
+
"eval_steps_per_second": 3.088,
|
629 |
+
"step": 15337
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"epoch": 4.81,
|
633 |
+
"learning_rate": 5.762594893029676e-05,
|
634 |
+
"loss": 1.0338,
|
635 |
+
"step": 15500
|
636 |
+
},
|
637 |
+
{
|
638 |
+
"epoch": 4.86,
|
639 |
+
"eval_accuracy": 0.7838565333062765,
|
640 |
+
"eval_loss": 0.9712271690368652,
|
641 |
+
"eval_runtime": 4181.1547,
|
642 |
+
"eval_samples_per_second": 24.679,
|
643 |
+
"eval_steps_per_second": 3.085,
|
644 |
+
"step": 15650
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 4.96,
|
648 |
+
"eval_accuracy": 0.7854880736072989,
|
649 |
+
"eval_loss": 0.9626355767250061,
|
650 |
+
"eval_runtime": 4176.3487,
|
651 |
+
"eval_samples_per_second": 24.707,
|
652 |
+
"eval_steps_per_second": 3.089,
|
653 |
+
"step": 15963
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 4.97,
|
657 |
+
"learning_rate": 5.590062111801242e-05,
|
658 |
+
"loss": 1.0188,
|
659 |
+
"step": 16000
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"epoch": 5.05,
|
663 |
+
"eval_accuracy": 0.7867994298371893,
|
664 |
+
"eval_loss": 0.9558107256889343,
|
665 |
+
"eval_runtime": 4179.0241,
|
666 |
+
"eval_samples_per_second": 24.692,
|
667 |
+
"eval_steps_per_second": 3.087,
|
668 |
+
"step": 16276
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 5.12,
|
672 |
+
"learning_rate": 5.417529330572809e-05,
|
673 |
+
"loss": 1.003,
|
674 |
+
"step": 16500
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 5.15,
|
678 |
+
"eval_accuracy": 0.7884956846420655,
|
679 |
+
"eval_loss": 0.9470182657241821,
|
680 |
+
"eval_runtime": 4176.2829,
|
681 |
+
"eval_samples_per_second": 24.708,
|
682 |
+
"eval_steps_per_second": 3.089,
|
683 |
+
"step": 16589
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"epoch": 5.25,
|
687 |
+
"eval_accuracy": 0.789320227965163,
|
688 |
+
"eval_loss": 0.9419927597045898,
|
689 |
+
"eval_runtime": 4176.4362,
|
690 |
+
"eval_samples_per_second": 24.707,
|
691 |
+
"eval_steps_per_second": 3.089,
|
692 |
+
"step": 16902
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 5.28,
|
696 |
+
"learning_rate": 5.244996549344375e-05,
|
697 |
+
"loss": 0.989,
|
698 |
+
"step": 17000
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 5.35,
|
702 |
+
"eval_accuracy": 0.7911368944368907,
|
703 |
+
"eval_loss": 0.9319880604743958,
|
704 |
+
"eval_runtime": 4173.211,
|
705 |
+
"eval_samples_per_second": 24.726,
|
706 |
+
"eval_steps_per_second": 3.091,
|
707 |
+
"step": 17215
|
708 |
+
},
|
709 |
+
{
|
710 |
+
"epoch": 5.43,
|
711 |
+
"learning_rate": 5.072463768115943e-05,
|
712 |
+
"loss": 0.9786,
|
713 |
+
"step": 17500
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"epoch": 5.44,
|
717 |
+
"eval_accuracy": 0.7913904624057875,
|
718 |
+
"eval_loss": 0.9292972683906555,
|
719 |
+
"eval_runtime": 4172.1427,
|
720 |
+
"eval_samples_per_second": 24.732,
|
721 |
+
"eval_steps_per_second": 3.092,
|
722 |
+
"step": 17528
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 5.54,
|
726 |
+
"eval_accuracy": 0.7932201930680667,
|
727 |
+
"eval_loss": 0.9203895330429077,
|
728 |
+
"eval_runtime": 4172.1933,
|
729 |
+
"eval_samples_per_second": 24.732,
|
730 |
+
"eval_steps_per_second": 3.092,
|
731 |
+
"step": 17841
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"epoch": 5.59,
|
735 |
+
"learning_rate": 4.899930986887509e-05,
|
736 |
+
"loss": 0.9688,
|
737 |
+
"step": 18000
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 5.64,
|
741 |
+
"eval_accuracy": 0.7938784128863696,
|
742 |
+
"eval_loss": 0.9155610799789429,
|
743 |
+
"eval_runtime": 4171.4989,
|
744 |
+
"eval_samples_per_second": 24.736,
|
745 |
+
"eval_steps_per_second": 3.092,
|
746 |
+
"step": 18154
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 5.73,
|
750 |
+
"eval_accuracy": 0.7952068414816341,
|
751 |
+
"eval_loss": 0.9091127514839172,
|
752 |
+
"eval_runtime": 4177.1927,
|
753 |
+
"eval_samples_per_second": 24.702,
|
754 |
+
"eval_steps_per_second": 3.088,
|
755 |
+
"step": 18467
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"epoch": 5.74,
|
759 |
+
"learning_rate": 4.727398205659075e-05,
|
760 |
+
"loss": 0.9576,
|
761 |
+
"step": 18500
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 5.83,
|
765 |
+
"eval_accuracy": 0.7959312809475213,
|
766 |
+
"eval_loss": 0.9035018682479858,
|
767 |
+
"eval_runtime": 4178.199,
|
768 |
+
"eval_samples_per_second": 24.697,
|
769 |
+
"eval_steps_per_second": 3.087,
|
770 |
+
"step": 18780
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 5.9,
|
774 |
+
"learning_rate": 4.554865424430642e-05,
|
775 |
+
"loss": 0.9489,
|
776 |
+
"step": 19000
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 5.93,
|
780 |
+
"eval_accuracy": 0.7968186229313537,
|
781 |
+
"eval_loss": 0.8974489569664001,
|
782 |
+
"eval_runtime": 4175.3753,
|
783 |
+
"eval_samples_per_second": 24.713,
|
784 |
+
"eval_steps_per_second": 3.089,
|
785 |
+
"step": 19093
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"epoch": 6.03,
|
789 |
+
"eval_accuracy": 0.7980068894657456,
|
790 |
+
"eval_loss": 0.8927856087684631,
|
791 |
+
"eval_runtime": 4174.5551,
|
792 |
+
"eval_samples_per_second": 24.718,
|
793 |
+
"eval_steps_per_second": 3.09,
|
794 |
+
"step": 19406
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 6.06,
|
798 |
+
"learning_rate": 4.382332643202209e-05,
|
799 |
+
"loss": 0.9384,
|
800 |
+
"step": 19500
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 6.12,
|
804 |
+
"eval_accuracy": 0.7989207834455775,
|
805 |
+
"eval_loss": 0.8878790140151978,
|
806 |
+
"eval_runtime": 4176.0286,
|
807 |
+
"eval_samples_per_second": 24.709,
|
808 |
+
"eval_steps_per_second": 3.089,
|
809 |
+
"step": 19719
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 6.21,
|
813 |
+
"learning_rate": 4.209799861973775e-05,
|
814 |
+
"loss": 0.9292,
|
815 |
+
"step": 20000
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"epoch": 6.22,
|
819 |
+
"eval_accuracy": 0.7995861067424526,
|
820 |
+
"eval_loss": 0.8841228485107422,
|
821 |
+
"eval_runtime": 4174.1874,
|
822 |
+
"eval_samples_per_second": 24.72,
|
823 |
+
"eval_steps_per_second": 3.09,
|
824 |
+
"step": 20032
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 6.32,
|
828 |
+
"eval_accuracy": 0.8005012964274263,
|
829 |
+
"eval_loss": 0.8798208236694336,
|
830 |
+
"eval_runtime": 4177.291,
|
831 |
+
"eval_samples_per_second": 24.702,
|
832 |
+
"eval_steps_per_second": 3.088,
|
833 |
+
"step": 20345
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"epoch": 6.37,
|
837 |
+
"learning_rate": 4.0372670807453414e-05,
|
838 |
+
"loss": 0.921,
|
839 |
+
"step": 20500
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"epoch": 6.41,
|
843 |
+
"eval_accuracy": 0.8013221542890863,
|
844 |
+
"eval_loss": 0.8738238215446472,
|
845 |
+
"eval_runtime": 4179.3089,
|
846 |
+
"eval_samples_per_second": 24.69,
|
847 |
+
"eval_steps_per_second": 3.086,
|
848 |
+
"step": 20658
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 6.51,
|
852 |
+
"eval_accuracy": 0.8020292962858104,
|
853 |
+
"eval_loss": 0.8702828288078308,
|
854 |
+
"eval_runtime": 4183.644,
|
855 |
+
"eval_samples_per_second": 24.664,
|
856 |
+
"eval_steps_per_second": 3.083,
|
857 |
+
"step": 20971
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"epoch": 6.52,
|
861 |
+
"learning_rate": 3.864734299516908e-05,
|
862 |
+
"loss": 0.9142,
|
863 |
+
"step": 21000
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 6.61,
|
867 |
+
"eval_accuracy": 0.8031108659339165,
|
868 |
+
"eval_loss": 0.8653974533081055,
|
869 |
+
"eval_runtime": 4177.1307,
|
870 |
+
"eval_samples_per_second": 24.703,
|
871 |
+
"eval_steps_per_second": 3.088,
|
872 |
+
"step": 21284
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 6.68,
|
876 |
+
"learning_rate": 3.692201518288475e-05,
|
877 |
+
"loss": 0.9059,
|
878 |
+
"step": 21500
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 6.71,
|
882 |
+
"eval_accuracy": 0.803630800811672,
|
883 |
+
"eval_loss": 0.8622693419456482,
|
884 |
+
"eval_runtime": 4177.9531,
|
885 |
+
"eval_samples_per_second": 24.698,
|
886 |
+
"eval_steps_per_second": 3.087,
|
887 |
+
"step": 21597
|
888 |
+
},
|
889 |
+
{
|
890 |
+
"epoch": 6.8,
|
891 |
+
"eval_accuracy": 0.8044488106784644,
|
892 |
+
"eval_loss": 0.8577073812484741,
|
893 |
+
"eval_runtime": 4179.042,
|
894 |
+
"eval_samples_per_second": 24.692,
|
895 |
+
"eval_steps_per_second": 3.087,
|
896 |
+
"step": 21910
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"epoch": 6.83,
|
900 |
+
"learning_rate": 3.519668737060042e-05,
|
901 |
+
"loss": 0.9,
|
902 |
+
"step": 22000
|
903 |
+
},
|
904 |
+
{
|
905 |
+
"epoch": 6.9,
|
906 |
+
"eval_accuracy": 0.8051737023740322,
|
907 |
+
"eval_loss": 0.8543989062309265,
|
908 |
+
"eval_runtime": 4184.397,
|
909 |
+
"eval_samples_per_second": 24.66,
|
910 |
+
"eval_steps_per_second": 3.083,
|
911 |
+
"step": 22223
|
912 |
+
},
|
913 |
+
{
|
914 |
+
"epoch": 6.99,
|
915 |
+
"learning_rate": 3.347135955831608e-05,
|
916 |
+
"loss": 0.8938,
|
917 |
+
"step": 22500
|
918 |
+
},
|
919 |
+
{
|
920 |
+
"epoch": 7.0,
|
921 |
+
"eval_accuracy": 0.8057043385627138,
|
922 |
+
"eval_loss": 0.8503552079200745,
|
923 |
+
"eval_runtime": 4183.5003,
|
924 |
+
"eval_samples_per_second": 24.665,
|
925 |
+
"eval_steps_per_second": 3.083,
|
926 |
+
"step": 22536
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 7.1,
|
930 |
+
"eval_accuracy": 0.8066939882795919,
|
931 |
+
"eval_loss": 0.8455684781074524,
|
932 |
+
"eval_runtime": 4184.5066,
|
933 |
+
"eval_samples_per_second": 24.659,
|
934 |
+
"eval_steps_per_second": 3.083,
|
935 |
+
"step": 22849
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"epoch": 7.14,
|
939 |
+
"learning_rate": 3.1746031746031745e-05,
|
940 |
+
"loss": 0.8863,
|
941 |
+
"step": 23000
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"epoch": 7.19,
|
945 |
+
"eval_accuracy": 0.8068218962399752,
|
946 |
+
"eval_loss": 0.8439931273460388,
|
947 |
+
"eval_runtime": 4178.7482,
|
948 |
+
"eval_samples_per_second": 24.693,
|
949 |
+
"eval_steps_per_second": 3.087,
|
950 |
+
"step": 23162
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 7.29,
|
954 |
+
"eval_accuracy": 0.8075830543867027,
|
955 |
+
"eval_loss": 0.8405274152755737,
|
956 |
+
"eval_runtime": 4175.082,
|
957 |
+
"eval_samples_per_second": 24.715,
|
958 |
+
"eval_steps_per_second": 3.09,
|
959 |
+
"step": 23475
|
960 |
+
},
|
961 |
+
{
|
962 |
+
"epoch": 7.3,
|
963 |
+
"learning_rate": 3.0020703933747414e-05,
|
964 |
+
"loss": 0.8804,
|
965 |
+
"step": 23500
|
966 |
+
},
|
967 |
+
{
|
968 |
+
"epoch": 7.39,
|
969 |
+
"eval_accuracy": 0.8083236702044754,
|
970 |
+
"eval_loss": 0.8358407616615295,
|
971 |
+
"eval_runtime": 4173.8003,
|
972 |
+
"eval_samples_per_second": 24.723,
|
973 |
+
"eval_steps_per_second": 3.09,
|
974 |
+
"step": 23788
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 7.45,
|
978 |
+
"learning_rate": 2.829537612146308e-05,
|
979 |
+
"loss": 0.8743,
|
980 |
+
"step": 24000
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"epoch": 7.48,
|
984 |
+
"eval_accuracy": 0.8087474534271941,
|
985 |
+
"eval_loss": 0.8344011306762695,
|
986 |
+
"eval_runtime": 4174.341,
|
987 |
+
"eval_samples_per_second": 24.719,
|
988 |
+
"eval_steps_per_second": 3.09,
|
989 |
+
"step": 24101
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 7.58,
|
993 |
+
"eval_accuracy": 0.8092334825727566,
|
994 |
+
"eval_loss": 0.8311472535133362,
|
995 |
+
"eval_runtime": 4174.6403,
|
996 |
+
"eval_samples_per_second": 24.718,
|
997 |
+
"eval_steps_per_second": 3.09,
|
998 |
+
"step": 24414
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 7.61,
|
1002 |
+
"learning_rate": 2.6570048309178748e-05,
|
1003 |
+
"loss": 0.8706,
|
1004 |
+
"step": 24500
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 7.68,
|
1008 |
+
"eval_accuracy": 0.8097197803323306,
|
1009 |
+
"eval_loss": 0.8285520672798157,
|
1010 |
+
"eval_runtime": 4174.1958,
|
1011 |
+
"eval_samples_per_second": 24.72,
|
1012 |
+
"eval_steps_per_second": 3.09,
|
1013 |
+
"step": 24727
|
1014 |
+
},
|
1015 |
+
{
|
1016 |
+
"epoch": 7.76,
|
1017 |
+
"learning_rate": 2.484472049689441e-05,
|
1018 |
+
"loss": 0.8645,
|
1019 |
+
"step": 25000
|
1020 |
+
},
|
1021 |
+
{
|
1022 |
+
"epoch": 7.78,
|
1023 |
+
"eval_accuracy": 0.810216617587347,
|
1024 |
+
"eval_loss": 0.8253086805343628,
|
1025 |
+
"eval_runtime": 4174.8315,
|
1026 |
+
"eval_samples_per_second": 24.716,
|
1027 |
+
"eval_steps_per_second": 3.09,
|
1028 |
+
"step": 25040
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 7.87,
|
1032 |
+
"eval_accuracy": 0.8111007973238641,
|
1033 |
+
"eval_loss": 0.8211511373519897,
|
1034 |
+
"eval_runtime": 4173.759,
|
1035 |
+
"eval_samples_per_second": 24.723,
|
1036 |
+
"eval_steps_per_second": 3.09,
|
1037 |
+
"step": 25353
|
1038 |
+
},
|
1039 |
+
{
|
1040 |
+
"epoch": 7.92,
|
1041 |
+
"learning_rate": 2.311939268461008e-05,
|
1042 |
+
"loss": 0.8602,
|
1043 |
+
"step": 25500
|
1044 |
+
},
|
1045 |
+
{
|
1046 |
+
"epoch": 7.97,
|
1047 |
+
"eval_accuracy": 0.8111680475751303,
|
1048 |
+
"eval_loss": 0.8205570578575134,
|
1049 |
+
"eval_runtime": 4174.1596,
|
1050 |
+
"eval_samples_per_second": 24.72,
|
1051 |
+
"eval_steps_per_second": 3.09,
|
1052 |
+
"step": 25666
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 8.07,
|
1056 |
+
"eval_accuracy": 0.8120529685373788,
|
1057 |
+
"eval_loss": 0.8158560991287231,
|
1058 |
+
"eval_runtime": 4175.0585,
|
1059 |
+
"eval_samples_per_second": 24.715,
|
1060 |
+
"eval_steps_per_second": 3.09,
|
1061 |
+
"step": 25979
|
1062 |
+
},
|
1063 |
+
{
|
1064 |
+
"epoch": 8.07,
|
1065 |
+
"learning_rate": 2.139406487232574e-05,
|
1066 |
+
"loss": 0.8538,
|
1067 |
+
"step": 26000
|
1068 |
+
},
|
1069 |
+
{
|
1070 |
+
"epoch": 8.16,
|
1071 |
+
"eval_accuracy": 0.8122099938117417,
|
1072 |
+
"eval_loss": 0.814548134803772,
|
1073 |
+
"eval_runtime": 4175.6451,
|
1074 |
+
"eval_samples_per_second": 24.712,
|
1075 |
+
"eval_steps_per_second": 3.089,
|
1076 |
+
"step": 26292
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 8.23,
|
1080 |
+
"learning_rate": 1.966873706004141e-05,
|
1081 |
+
"loss": 0.8482,
|
1082 |
+
"step": 26500
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 8.26,
|
1086 |
+
"eval_accuracy": 0.8130589470835723,
|
1087 |
+
"eval_loss": 0.8115074634552002,
|
1088 |
+
"eval_runtime": 4173.7083,
|
1089 |
+
"eval_samples_per_second": 24.723,
|
1090 |
+
"eval_steps_per_second": 3.091,
|
1091 |
+
"step": 26605
|
1092 |
+
},
|
1093 |
+
{
|
1094 |
+
"epoch": 8.36,
|
1095 |
+
"eval_accuracy": 0.8134356257072347,
|
1096 |
+
"eval_loss": 0.8089998364448547,
|
1097 |
+
"eval_runtime": 4174.6745,
|
1098 |
+
"eval_samples_per_second": 24.717,
|
1099 |
+
"eval_steps_per_second": 3.09,
|
1100 |
+
"step": 26918
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 8.38,
|
1104 |
+
"learning_rate": 1.7943409247757076e-05,
|
1105 |
+
"loss": 0.8488,
|
1106 |
+
"step": 27000
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 8.46,
|
1110 |
+
"eval_accuracy": 0.8134433401076823,
|
1111 |
+
"eval_loss": 0.8088431358337402,
|
1112 |
+
"eval_runtime": 4174.8389,
|
1113 |
+
"eval_samples_per_second": 24.716,
|
1114 |
+
"eval_steps_per_second": 3.09,
|
1115 |
+
"step": 27231
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 8.54,
|
1119 |
+
"learning_rate": 1.621808143547274e-05,
|
1120 |
+
"loss": 0.8423,
|
1121 |
+
"step": 27500
|
1122 |
+
},
|
1123 |
+
{
|
1124 |
+
"epoch": 8.55,
|
1125 |
+
"eval_accuracy": 0.8137619275792424,
|
1126 |
+
"eval_loss": 0.8057170510292053,
|
1127 |
+
"eval_runtime": 4176.6965,
|
1128 |
+
"eval_samples_per_second": 24.705,
|
1129 |
+
"eval_steps_per_second": 3.088,
|
1130 |
+
"step": 27544
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 8.65,
|
1134 |
+
"eval_accuracy": 0.8144356879652452,
|
1135 |
+
"eval_loss": 0.8039630651473999,
|
1136 |
+
"eval_runtime": 4175.7093,
|
1137 |
+
"eval_samples_per_second": 24.711,
|
1138 |
+
"eval_steps_per_second": 3.089,
|
1139 |
+
"step": 27857
|
1140 |
+
},
|
1141 |
+
{
|
1142 |
+
"epoch": 8.69,
|
1143 |
+
"learning_rate": 1.4492753623188407e-05,
|
1144 |
+
"loss": 0.8396,
|
1145 |
+
"step": 28000
|
1146 |
+
},
|
1147 |
+
{
|
1148 |
+
"epoch": 8.75,
|
1149 |
+
"eval_accuracy": 0.8145382455874637,
|
1150 |
+
"eval_loss": 0.8026472926139832,
|
1151 |
+
"eval_runtime": 4180.1354,
|
1152 |
+
"eval_samples_per_second": 24.685,
|
1153 |
+
"eval_steps_per_second": 3.086,
|
1154 |
+
"step": 28170
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 8.84,
|
1158 |
+
"eval_accuracy": 0.8152832629079341,
|
1159 |
+
"eval_loss": 0.7988529205322266,
|
1160 |
+
"eval_runtime": 4179.9334,
|
1161 |
+
"eval_samples_per_second": 24.686,
|
1162 |
+
"eval_steps_per_second": 3.086,
|
1163 |
+
"step": 28483
|
1164 |
+
},
|
1165 |
+
{
|
1166 |
+
"epoch": 8.85,
|
1167 |
+
"learning_rate": 1.276742581090407e-05,
|
1168 |
+
"loss": 0.8377,
|
1169 |
+
"step": 28500
|
1170 |
+
},
|
1171 |
+
{
|
1172 |
+
"epoch": 8.94,
|
1173 |
+
"eval_accuracy": 0.8155252212471398,
|
1174 |
+
"eval_loss": 0.7979427576065063,
|
1175 |
+
"eval_runtime": 4178.4294,
|
1176 |
+
"eval_samples_per_second": 24.695,
|
1177 |
+
"eval_steps_per_second": 3.087,
|
1178 |
+
"step": 28796
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 9.01,
|
1182 |
+
"learning_rate": 1.1042097998619738e-05,
|
1183 |
+
"loss": 0.8319,
|
1184 |
+
"step": 29000
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 9.04,
|
1188 |
+
"eval_accuracy": 0.8159056442908116,
|
1189 |
+
"eval_loss": 0.7969533801078796,
|
1190 |
+
"eval_runtime": 4174.229,
|
1191 |
+
"eval_samples_per_second": 24.72,
|
1192 |
+
"eval_steps_per_second": 3.09,
|
1193 |
+
"step": 29109
|
1194 |
+
},
|
1195 |
+
{
|
1196 |
+
"epoch": 9.14,
|
1197 |
+
"eval_accuracy": 0.816157387607754,
|
1198 |
+
"eval_loss": 0.7945725917816162,
|
1199 |
+
"eval_runtime": 4172.4325,
|
1200 |
+
"eval_samples_per_second": 24.731,
|
1201 |
+
"eval_steps_per_second": 3.091,
|
1202 |
+
"step": 29422
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 9.16,
|
1206 |
+
"learning_rate": 9.316770186335403e-06,
|
1207 |
+
"loss": 0.8262,
|
1208 |
+
"step": 29500
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 9.23,
|
1212 |
+
"eval_accuracy": 0.8161445368180659,
|
1213 |
+
"eval_loss": 0.7940195202827454,
|
1214 |
+
"eval_runtime": 4171.791,
|
1215 |
+
"eval_samples_per_second": 24.734,
|
1216 |
+
"eval_steps_per_second": 3.092,
|
1217 |
+
"step": 29735
|
1218 |
+
},
|
1219 |
+
{
|
1220 |
+
"epoch": 9.32,
|
1221 |
+
"learning_rate": 7.591442374051071e-06,
|
1222 |
+
"loss": 0.8255,
|
1223 |
+
"step": 30000
|
1224 |
+
},
|
1225 |
+
{
|
1226 |
+
"epoch": 9.33,
|
1227 |
+
"eval_accuracy": 0.8167732822776922,
|
1228 |
+
"eval_loss": 0.7918646931648254,
|
1229 |
+
"eval_runtime": 4178.9618,
|
1230 |
+
"eval_samples_per_second": 24.692,
|
1231 |
+
"eval_steps_per_second": 3.087,
|
1232 |
+
"step": 30048
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 9.43,
|
1236 |
+
"eval_accuracy": 0.8168878384273093,
|
1237 |
+
"eval_loss": 0.7914555072784424,
|
1238 |
+
"eval_runtime": 4176.3937,
|
1239 |
+
"eval_samples_per_second": 24.707,
|
1240 |
+
"eval_steps_per_second": 3.089,
|
1241 |
+
"step": 30361
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 9.47,
|
1245 |
+
"learning_rate": 5.866114561766736e-06,
|
1246 |
+
"loss": 0.824,
|
1247 |
+
"step": 30500
|
1248 |
+
},
|
1249 |
+
{
|
1250 |
+
"epoch": 9.53,
|
1251 |
+
"eval_accuracy": 0.817306118390898,
|
1252 |
+
"eval_loss": 0.7896197438240051,
|
1253 |
+
"eval_runtime": 4176.9927,
|
1254 |
+
"eval_samples_per_second": 24.704,
|
1255 |
+
"eval_steps_per_second": 3.088,
|
1256 |
+
"step": 30674
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 9.62,
|
1260 |
+
"eval_accuracy": 0.8175610442353789,
|
1261 |
+
"eval_loss": 0.7872260212898254,
|
1262 |
+
"eval_runtime": 4173.6592,
|
1263 |
+
"eval_samples_per_second": 24.723,
|
1264 |
+
"eval_steps_per_second": 3.091,
|
1265 |
+
"step": 30987
|
1266 |
+
},
|
1267 |
+
{
|
1268 |
+
"epoch": 9.63,
|
1269 |
+
"learning_rate": 4.140786749482402e-06,
|
1270 |
+
"loss": 0.8218,
|
1271 |
+
"step": 31000
|
1272 |
+
},
|
1273 |
+
{
|
1274 |
+
"epoch": 9.72,
|
1275 |
+
"eval_accuracy": 0.8176242146063594,
|
1276 |
+
"eval_loss": 0.7876725792884827,
|
1277 |
+
"eval_runtime": 4174.4186,
|
1278 |
+
"eval_samples_per_second": 24.719,
|
1279 |
+
"eval_steps_per_second": 3.09,
|
1280 |
+
"step": 31300
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"epoch": 9.78,
|
1284 |
+
"learning_rate": 2.4154589371980677e-06,
|
1285 |
+
"loss": 0.8204,
|
1286 |
+
"step": 31500
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 9.82,
|
1290 |
+
"eval_accuracy": 0.8176433057924909,
|
1291 |
+
"eval_loss": 0.7873775959014893,
|
1292 |
+
"eval_runtime": 4173.4522,
|
1293 |
+
"eval_samples_per_second": 24.725,
|
1294 |
+
"eval_steps_per_second": 3.091,
|
1295 |
+
"step": 31613
|
1296 |
+
},
|
1297 |
+
{
|
1298 |
+
"epoch": 9.91,
|
1299 |
+
"eval_accuracy": 0.8180999846708549,
|
1300 |
+
"eval_loss": 0.7846992611885071,
|
1301 |
+
"eval_runtime": 4174.7361,
|
1302 |
+
"eval_samples_per_second": 24.717,
|
1303 |
+
"eval_steps_per_second": 3.09,
|
1304 |
+
"step": 31926
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 9.94,
|
1308 |
+
"learning_rate": 6.901311249137336e-07,
|
1309 |
+
"loss": 0.8177,
|
1310 |
+
"step": 32000
|
1311 |
+
},
|
1312 |
+
{
|
1313 |
+
"epoch": 10.0,
|
1314 |
+
"step": 32200,
|
1315 |
+
"total_flos": 7.683327485823698e+18,
|
1316 |
+
"train_loss": 1.915723304985473,
|
1317 |
+
"train_runtime": 1372706.2896,
|
1318 |
+
"train_samples_per_second": 6.006,
|
1319 |
+
"train_steps_per_second": 0.023
|
1320 |
+
}
|
1321 |
+
],
|
1322 |
+
"max_steps": 32200,
|
1323 |
+
"num_train_epochs": 10,
|
1324 |
+
"total_flos": 7.683327485823698e+18,
|
1325 |
+
"trial_name": null,
|
1326 |
+
"trial_params": null
|
1327 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d707fe5411bc278612fcbbab1a8bd257aa8d713dbd43dd10985ce0d0c74c44c5
|
3 |
+
size 3963
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|