File size: 2,113 Bytes
53e7a91
a4c8d1c
 
53e7a91
 
a4c8d1c
53e7a91
a4c8d1c
 
53e7a91
 
440a256
53e7a91
a4c8d1c
 
 
 
440a256
a4c8d1c
 
 
43ca228
a4c8d1c
 
440a256
a4c8d1c
440a256
53e7a91
 
 
 
 
a4c8d1c
53e7a91
a4c8d1c
53e7a91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
language:
- vi
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
base_model: openai/whisper-small
model-index:
- name: Whisper Small Vietnamese
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: mozilla-foundation/common_voice_11_0 vi
      type: mozilla-foundation/common_voice_11_0
      config: vi
      split: None
    metrics:
    - type: wer
      value: 34.21715788320368
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small Vietnamese

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 vi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9921
- Wer: 34.2172

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0002        | 124.0 | 1000 | 0.7998          | 21.7706 |
| 0.0001        | 249.0 | 2000 | 0.8833          | 28.9690 |
| 0.0           | 374.0 | 3000 | 0.9382          | 30.8206 |
| 0.0           | 499.0 | 4000 | 0.9754          | 34.4363 |
| 0.0           | 624.0 | 5000 | 0.9921          | 34.2172 |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.13.0
- Datasets 2.7.1
- Tokenizers 0.13.2