johko commited on
Commit
3760617
·
1 Parent(s): e8c60b7

initial commit with trained model

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 174.53 +/- 27.38
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fce93877280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fce93877310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fce938773a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fce93877430>", "_build": "<function ActorCriticPolicy._build at 0x7fce938774c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fce93877550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fce938775e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fce93877670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fce93877700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fce93877790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fce93877820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fce93879100>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652124571.5557187, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVKQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjHwvaG9tZS9qb2hhbm5lcy8ubG9jYWwvc2hhcmUvdmlydHVhbGVudnMvZGVlcC1ybC1jbGFzcy1HVFE1WjN4VS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIx8L2hvbWUvam9oYW5uZXMvLmxvY2FsL3NoYXJlL3ZpcnR1YWxlbnZzL2RlZXAtcmwtY2xhc3MtR1RRNVozeFUvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEC5kj1ksZk/BIMxPgbdm74GsXU9MM7mOgAAAAAAAAAAANR9PBaKyT6VW729hwEmvpRVmr0ODtW8AAAAAAAAAACm59M+b1QQP8s9+L30VUi+9UsPvS3Qpr0AAAAAAAAAAG04bz5SaMm5KzkwvMzEvre9iTY7KnW+uAAAgD8AAIA/2he0Pfawebr67zq8pF6kth8hEjvm8RQ2AACAPwAAgD+AWqc9VLr5Pq5Xhb3jpoa+4moHPQIs6z0AAAAAAAAAALNujT7Kkg48FTFWvHlWjTx2Rq094g2CvQAAgD8AAAAATcBcPcPVGrojfdE6ZHbVNodwJTst+u+5AACAPwAAgD9zF9K9KZgqupYcg7unajw4U6Y3Os4hQDcAAIA/AACAP7P/8b0ptCa6ToakOiBgmba8tdK7QoLMuQAAgD8AAIA/AOWIvWcHfj+d5Fi9LXiivuZmrrwpQIm9AAAAAAAAAABW6U2+kTC7PjSbSj20izi+BjJ3O8BdZz0AAAAAAAAAAPMfxb24nqe5fehQvJJJYjYgSKe74zvRtQAAgD8AAIA/fRa3Pp+Wdz+hrJc+veOfvl5tmT4+Gq29AAAAAAAAAAAAhKs9rv+PusCd3joyM1c2ZLvpOhiZ/bkAAIA/AACAPwByhL17vpO6RKaAuxeOSLYQXqw6yfuUOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5Gcj101DWkCUhpRSlIwBbJRN6AOMAXSUR0CMhlPLxI8RdX2UKGgGaAloD0MISu8bX3sYVUCUhpRSlGgVTegDaBZHQIyQk6V+qip1fZQoaAZoCWgPQwh2UfTAx1hdQJSGlFKUaBVN6ANoFkdAjLdNmL9/BnV9lChoBmgJaA9DCARZT62+dmFAlIaUUpRoFU3oA2gWR0CMt6aESM99dX2UKGgGaAloD0MI2bPnMjX8YECUhpRSlGgVTegDaBZHQIzG8IZ62OR1fZQoaAZoCWgPQwjHuU24V2RZQJSGlFKUaBVN6ANoFkdAjM2IsAeaKHV9lChoBmgJaA9DCLGJzFzghFVAlIaUUpRoFU3oA2gWR0CM0dUrkKeDdX2UKGgGaAloD0MIC19f61IVXkCUhpRSlGgVTegDaBZHQI0F9N1yNn51fZQoaAZoCWgPQwh4CyQofgheQJSGlFKUaBVN6ANoFkdAjQmnmJWNm3V9lChoBmgJaA9DCGvSbYlc/19AlIaUUpRoFU3oA2gWR0CNDE1lXiiqdX2UKGgGaAloD0MIDRr6JzhiYUCUhpRSlGgVTegDaBZHQI0T2EdvKlp1fZQoaAZoCWgPQwj6tmCpLs5iQJSGlFKUaBVN6ANoFkdAjRVr3bmEG3V9lChoBmgJaA9DCNUGJ6JfKxbAlIaUUpRoFU1LAWgWR0CNGJZ/0/W2dX2UKGgGaAloD0MIpwLuef5AXUCUhpRSlGgVTegDaBZHQI0dSJj2Bat1fZQoaAZoCWgPQwhvD0JAvrtaQJSGlFKUaBVN6ANoFkdAjSGjoZAIIHV9lChoBmgJaA9DCDS9xFimt1lAlIaUUpRoFU3oA2gWR0CNJPdEb5uZdX2UKGgGaAloD0MIlNkgk4xeT8CUhpRSlGgVTTUBaBZHQI0pccENe+p1fZQoaAZoCWgPQwiatRSQ9hJhQJSGlFKUaBVN6ANoFkdAjS+cXm/34HV9lChoBmgJaA9DCOIFEalpvz/AlIaUUpRoFU0tAWgWR0CNMBNqQA+7dX2UKGgGaAloD0MIx4Ds9e4MXkCUhpRSlGgVTegDaBZHQI0wgt8NQTF1fZQoaAZoCWgPQwgDQ1a3ehhXQJSGlFKUaBVN6ANoFkdAjTWc1XNkfHV9lChoBmgJaA9DCImzImqibULAlIaUUpRoFU0YAWgWR0CNO5EQ5FPSdX2UKGgGaAloD0MIk3L3OT6VXUCUhpRSlGgVTegDaBZHQI1Qa0IC2c91fZQoaAZoCWgPQwjB5bFmZBVaQJSGlFKUaBVN6ANoFkdAjVC7O/tY0XV9lChoBmgJaA9DCK0zvi8urS3AlIaUUpRoFU1LAWgWR0CNV+I7eVLSdX2UKGgGaAloD0MIrcCQ1a37YECUhpRSlGgVTegDaBZHQI1dyLyc0+F1fZQoaAZoCWgPQwi4k4jwL9BcQJSGlFKUaBVN6ANoFkdAjWe+1rqMWHV9lChoBmgJaA9DCIxkj1AzBFpAlIaUUpRoFU3oA2gWR0CNd28dxQzldX2UKGgGaAloD0MIe2r11VUhW0CUhpRSlGgVTegDaBZHQI2fTaRISUV1fZQoaAZoCWgPQwjVBbzMsAEkQJSGlFKUaBVNDwFoFkdAjaDZaV2RrHV9lChoBmgJaA9DCNegL739/VFAlIaUUpRoFU3oA2gWR0CNtsiRnvlVdX2UKGgGaAloD0MIN6rTgSxRYECUhpRSlGgVTegDaBZHQI2+ZIlMRHx1fZQoaAZoCWgPQwhq2zAKgrBeQJSGlFKUaBVN6ANoFkdAjciXKB/ZunV9lChoBmgJaA9DCEERixh2X2BAlIaUUpRoFU3oA2gWR0CN2FUqhDgJdX2UKGgGaAloD0MIG76FdeM6V0CUhpRSlGgVTegDaBZHQI3iOhAWznl1fZQoaAZoCWgPQwj3cwrys9JWQJSGlFKUaBVN6ANoFkdAje+QHJLdvnV9lChoBmgJaA9DCGyYofFE+2BAlIaUUpRoFU3oA2gWR0CN8Zn3+MqCdX2UKGgGaAloD0MIoiQk0jYWXUCUhpRSlGgVTegDaBZHQI39MPhAGB51fZQoaAZoCWgPQwgpWU5C6fBdQJSGlFKUaBVN6ANoFkdAjggmsvIwNHV9lChoBmgJaA9DCDnulA7W319AlIaUUpRoFU3oA2gWR0COJhgnc+JQdX2UKGgGaAloD0MIeEZblURmYkCUhpRSlGgVTegDaBZHQI4mxqEeyRl1fZQoaAZoCWgPQwhcyY6NQFZbQJSGlFKUaBVN6ANoFkdAjkCgUDdP+HV9lChoBmgJaA9DCFckJqjh0ltAlIaUUpRoFU3oA2gWR0COUkngHeJpdX2UKGgGaAloD0MIQgkzbf/SYUCUhpRSlGgVTegDaBZHQI5vecz67/Z1fZQoaAZoCWgPQwjlnNhD+3ddQJSGlFKUaBVN6ANoFkdAjqfXAEdNnHV9lChoBmgJaA9DCJ+PMuIC7FhAlIaUUpRoFU3oA2gWR0COqO2itaIOdX2UKGgGaAloD0MIhnMNMzQDUECUhpRSlGgVTegDaBZHQI65QZl4C6p1fZQoaAZoCWgPQwhMF2L1R59WQJSGlFKUaBVN6ANoFkdAjr5ox59mYnV9lChoBmgJaA9DCLpMTYI3mmFAlIaUUpRoFU3oA2gWR0COxZdE9dNWdX2UKGgGaAloD0MIgPEMGvqoV0CUhpRSlGgVTegDaBZHQI7RcpXp4bF1fZQoaAZoCWgPQwhZGY183tpgQJSGlFKUaBVN6ANoFkdAjtjKiO/+KnV9lChoBmgJaA9DCO+QYoBEcVhAlIaUUpRoFU3oA2gWR0CO4jDVpbljdX2UKGgGaAloD0MI2iCTjJwdYECUhpRSlGgVTegDaBZHQI7kPOv+wTx1fZQoaAZoCWgPQwgM5q+QuQZaQJSGlFKUaBVN6ANoFkdAju0uTq0MPXV9lChoBmgJaA9DCM9J7xtf2llAlIaUUpRoFU3oA2gWR0CO9rjZtelbdX2UKGgGaAloD0MIN/5EZcN5Y0CUhpRSlGgVTegDaBZHQI8RlozvZyx1fZQoaAZoCWgPQwhEb/HwnuNWQJSGlFKUaBVN6ANoFkdAjxHn2h7E53V9lChoBmgJaA9DCIRm170Vu19AlIaUUpRoFU3oA2gWR0CPHp7CzkZKdX2UKGgGaAloD0MIKA01Ckl7YECUhpRSlGgVTegDaBZHQI8p3kFOful1fZQoaAZoCWgPQwjGwhA5fUtsQJSGlFKUaBVNbQFoFkdAjzKG1YyO73V9lChoBmgJaA9DCAzJycStm19AlIaUUpRoFU3oA2gWR0CPQrOQhfShdX2UKGgGaAloD0MItYmT+x08V0CUhpRSlGgVTegDaBZHQI9IokJKJ2t1fZQoaAZoCWgPQwj5Tsx6MfBhQJSGlFKUaBVN6ANoFkdAj0o+Y2Kl6HV9lChoBmgJaA9DCHh/vFet1GJAlIaUUpRoFU3oA2gWR0CQIVqhUR4AdX2UKGgGaAloD0MIKV36l6R3WkCUhpRSlGgVTegDaBZHQJAmBB7eEZl1fZQoaAZoCWgPQwjilLn5RmZcQJSGlFKUaBVN6ANoFkdAkCx1vZRKpXV9lChoBmgJaA9DCFN6ppeYOGBAlIaUUpRoFU3oA2gWR0CQN2lbNbC8dX2UKGgGaAloD0MI8rbSa7PPQECUhpRSlGgVTVQBaBZHQJA6Sad+Xqt1fZQoaAZoCWgPQwgbECGuHJVjQJSGlFKUaBVN6ANoFkdAkD0nyiEg4nV9lChoBmgJaA9DCAPqzaj5sVlAlIaUUpRoFU3oA2gWR0CQRgBpHqeLdX2UKGgGaAloD0MIbcmqCDdFXkCUhpRSlGgVTegDaBZHQJBHT1UVBUt1fZQoaAZoCWgPQwiYMJqV7VBZQJSGlFKUaBVN6ANoFkdAkE6v5pJwsHV9lChoBmgJaA9DCHVVoBaDh/6/lIaUUpRoFU06AWgWR0CQYX+x4Y78dX2UKGgGaAloD0MIILjKE4hpY0CUhpRSlGgVTegDaBZHQJBuVkf9xZN1fZQoaAZoCWgPQwhUcHhBRD5jQJSGlFKUaBVN6ANoFkdAkG6sstkFwHV9lChoBmgJaA9DCJRrCmR2wjfAlIaUUpRoFU0bAWgWR0CQd1RGMGX5dX2UKGgGaAloD0MIG0ZB8Pg2V0CUhpRSlGgVTegDaBZHQJB7gcU/OdJ1fZQoaAZoCWgPQwhat0HtN6RhQJSGlFKUaBVN6ANoFkdAkIRAFkhA4XV9lChoBmgJaA9DCJUO1v85JlxAlIaUUpRoFU3oA2gWR0CQinV8kUsWdX2UKGgGaAloD0MIK4arAyDSZECUhpRSlGgVTXACaBZHQJCP7HKfWc11fZQoaAZoCWgPQwiV10roLsJfQJSGlFKUaBVN6ANoFkdAkJgWJBPbf3V9lChoBmgJaA9DCABXsmMjc11AlIaUUpRoFU3oA2gWR0CQmO3JPqLTdX2UKGgGaAloD0MIS5ARUOHUMUCUhpRSlGgVTQUBaBZHQJCZPv5P/Jh1fZQoaAZoCWgPQwiCjla1pGNWQJSGlFKUaBVN6ANoFkdAkN6sbvPTonV9lChoBmgJaA9DCFq9w+3QWFJAlIaUUpRoFU3oA2gWR0CQ4dIO6NEPdX2UKGgGaAloD0MIPnrDfeTuVUCUhpRSlGgVTegDaBZHQJDmpp48lol1fZQoaAZoCWgPQwgV5Gcj15RiQJSGlFKUaBVN6ANoFkdAkPQoVmBe5XV9lChoBmgJaA9DCL/VOnE5bWBAlIaUUpRoFU3oA2gWR0CQ+rTjNpuddX2UKGgGaAloD0MIUd7H0RzoXECUhpRSlGgVTegDaBZHQJD7rlPrOZ91fZQoaAZoCWgPQwgoY3yYPTNhQJSGlFKUaBVN6ANoFkdAkQ+lVktmMHV9lChoBmgJaA9DCBjt8UI64lRAlIaUUpRoFU3oA2gWR0CRF83dKujidX2UKGgGaAloD0MI5xpmaDzoX0CUhpRSlGgVTegDaBZHQJEX/YRNATt1fZQoaAZoCWgPQwjzxklh3q9hQJSGlFKUaBVN6ANoFkdAkR/qVlf7anV9lChoBmgJaA9DCHh8e9eghmJAlIaUUpRoFU3oA2gWR0CRJXhoM8YAdX2UKGgGaAloD0MI/gxv1uANNMCUhpRSlGgVTRkBaBZHQJEoL93r2QJ1fZQoaAZoCWgPQwiv6UFBKShgQJSGlFKUaBVN6ANoFkdAkSlGtITXa3V9lChoBmgJaA9DCLOVl/zPk2FAlIaUUpRoFU3oA2gWR0CRLJ9G7SRbdX2UKGgGaAloD0MIYHXkSGeZYECUhpRSlGgVTegDaBZHQJEy/+5vtMR1fZQoaAZoCWgPQwit9xvtuGdaQJSGlFKUaBVN6ANoFkdAkTOSvLX+VHV9lChoBmgJaA9DCLFSQUXVFVtAlIaUUpRoFU3oA2gWR0CRM9Iu5BkadWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVKQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjHwvaG9tZS9qb2hhbm5lcy8ubG9jYWwvc2hhcmUvdmlydHVhbGVudnMvZGVlcC1ybC1jbGFzcy1HVFE1WjN4VS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIx8L2hvbWUvam9oYW5uZXMvLmxvY2FsL3NoYXJlL3ZpcnR1YWxlbnZzL2RlZXAtcmwtY2xhc3MtR1RRNVozeFUvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.11.0-051100-generic-x86_64-with-glibc2.27 #202102142330 SMP Sun Feb 14 23:33:21 UTC 2021", "Python": "3.9.9", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43b931c2c05a00df38420a9ed96d8137e85daa0ac2a4331e96078ab0eea6eb1e
3
+ size 144354
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fce93877280>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fce93877310>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fce938773a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fce93877430>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fce938774c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fce93877550>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fce938775e0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fce93877670>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fce93877700>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fce93877790>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fce93877820>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc._abc_data object at 0x7fce93879100>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652124571.5557187,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVKQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjHwvaG9tZS9qb2hhbm5lcy8ubG9jYWwvc2hhcmUvdmlydHVhbGVudnMvZGVlcC1ybC1jbGFzcy1HVFE1WjN4VS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIx8L2hvbWUvam9oYW5uZXMvLmxvY2FsL3NoYXJlL3ZpcnR1YWxlbnZzL2RlZXAtcmwtY2xhc3MtR1RRNVozeFUvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEC5kj1ksZk/BIMxPgbdm74GsXU9MM7mOgAAAAAAAAAAANR9PBaKyT6VW729hwEmvpRVmr0ODtW8AAAAAAAAAACm59M+b1QQP8s9+L30VUi+9UsPvS3Qpr0AAAAAAAAAAG04bz5SaMm5KzkwvMzEvre9iTY7KnW+uAAAgD8AAIA/2he0Pfawebr67zq8pF6kth8hEjvm8RQ2AACAPwAAgD+AWqc9VLr5Pq5Xhb3jpoa+4moHPQIs6z0AAAAAAAAAALNujT7Kkg48FTFWvHlWjTx2Rq094g2CvQAAgD8AAAAATcBcPcPVGrojfdE6ZHbVNodwJTst+u+5AACAPwAAgD9zF9K9KZgqupYcg7unajw4U6Y3Os4hQDcAAIA/AACAP7P/8b0ptCa6ToakOiBgmba8tdK7QoLMuQAAgD8AAIA/AOWIvWcHfj+d5Fi9LXiivuZmrrwpQIm9AAAAAAAAAABW6U2+kTC7PjSbSj20izi+BjJ3O8BdZz0AAAAAAAAAAPMfxb24nqe5fehQvJJJYjYgSKe74zvRtQAAgD8AAIA/fRa3Pp+Wdz+hrJc+veOfvl5tmT4+Gq29AAAAAAAAAAAAhKs9rv+PusCd3joyM1c2ZLvpOhiZ/bkAAIA/AACAPwByhL17vpO6RKaAuxeOSLYQXqw6yfuUOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5Gcj101DWkCUhpRSlIwBbJRN6AOMAXSUR0CMhlPLxI8RdX2UKGgGaAloD0MISu8bX3sYVUCUhpRSlGgVTegDaBZHQIyQk6V+qip1fZQoaAZoCWgPQwh2UfTAx1hdQJSGlFKUaBVN6ANoFkdAjLdNmL9/BnV9lChoBmgJaA9DCARZT62+dmFAlIaUUpRoFU3oA2gWR0CMt6aESM99dX2UKGgGaAloD0MI2bPnMjX8YECUhpRSlGgVTegDaBZHQIzG8IZ62OR1fZQoaAZoCWgPQwjHuU24V2RZQJSGlFKUaBVN6ANoFkdAjM2IsAeaKHV9lChoBmgJaA9DCLGJzFzghFVAlIaUUpRoFU3oA2gWR0CM0dUrkKeDdX2UKGgGaAloD0MIC19f61IVXkCUhpRSlGgVTegDaBZHQI0F9N1yNn51fZQoaAZoCWgPQwh4CyQofgheQJSGlFKUaBVN6ANoFkdAjQmnmJWNm3V9lChoBmgJaA9DCGvSbYlc/19AlIaUUpRoFU3oA2gWR0CNDE1lXiiqdX2UKGgGaAloD0MIDRr6JzhiYUCUhpRSlGgVTegDaBZHQI0T2EdvKlp1fZQoaAZoCWgPQwj6tmCpLs5iQJSGlFKUaBVN6ANoFkdAjRVr3bmEG3V9lChoBmgJaA9DCNUGJ6JfKxbAlIaUUpRoFU1LAWgWR0CNGJZ/0/W2dX2UKGgGaAloD0MIpwLuef5AXUCUhpRSlGgVTegDaBZHQI0dSJj2Bat1fZQoaAZoCWgPQwhvD0JAvrtaQJSGlFKUaBVN6ANoFkdAjSGjoZAIIHV9lChoBmgJaA9DCDS9xFimt1lAlIaUUpRoFU3oA2gWR0CNJPdEb5uZdX2UKGgGaAloD0MIlNkgk4xeT8CUhpRSlGgVTTUBaBZHQI0pccENe+p1fZQoaAZoCWgPQwiatRSQ9hJhQJSGlFKUaBVN6ANoFkdAjS+cXm/34HV9lChoBmgJaA9DCOIFEalpvz/AlIaUUpRoFU0tAWgWR0CNMBNqQA+7dX2UKGgGaAloD0MIx4Ds9e4MXkCUhpRSlGgVTegDaBZHQI0wgt8NQTF1fZQoaAZoCWgPQwgDQ1a3ehhXQJSGlFKUaBVN6ANoFkdAjTWc1XNkfHV9lChoBmgJaA9DCImzImqibULAlIaUUpRoFU0YAWgWR0CNO5EQ5FPSdX2UKGgGaAloD0MIk3L3OT6VXUCUhpRSlGgVTegDaBZHQI1Qa0IC2c91fZQoaAZoCWgPQwjB5bFmZBVaQJSGlFKUaBVN6ANoFkdAjVC7O/tY0XV9lChoBmgJaA9DCK0zvi8urS3AlIaUUpRoFU1LAWgWR0CNV+I7eVLSdX2UKGgGaAloD0MIrcCQ1a37YECUhpRSlGgVTegDaBZHQI1dyLyc0+F1fZQoaAZoCWgPQwi4k4jwL9BcQJSGlFKUaBVN6ANoFkdAjWe+1rqMWHV9lChoBmgJaA9DCIxkj1AzBFpAlIaUUpRoFU3oA2gWR0CNd28dxQzldX2UKGgGaAloD0MIe2r11VUhW0CUhpRSlGgVTegDaBZHQI2fTaRISUV1fZQoaAZoCWgPQwjVBbzMsAEkQJSGlFKUaBVNDwFoFkdAjaDZaV2RrHV9lChoBmgJaA9DCNegL739/VFAlIaUUpRoFU3oA2gWR0CNtsiRnvlVdX2UKGgGaAloD0MIN6rTgSxRYECUhpRSlGgVTegDaBZHQI2+ZIlMRHx1fZQoaAZoCWgPQwhq2zAKgrBeQJSGlFKUaBVN6ANoFkdAjciXKB/ZunV9lChoBmgJaA9DCEERixh2X2BAlIaUUpRoFU3oA2gWR0CN2FUqhDgJdX2UKGgGaAloD0MIG76FdeM6V0CUhpRSlGgVTegDaBZHQI3iOhAWznl1fZQoaAZoCWgPQwj3cwrys9JWQJSGlFKUaBVN6ANoFkdAje+QHJLdvnV9lChoBmgJaA9DCGyYofFE+2BAlIaUUpRoFU3oA2gWR0CN8Zn3+MqCdX2UKGgGaAloD0MIoiQk0jYWXUCUhpRSlGgVTegDaBZHQI39MPhAGB51fZQoaAZoCWgPQwgpWU5C6fBdQJSGlFKUaBVN6ANoFkdAjggmsvIwNHV9lChoBmgJaA9DCDnulA7W319AlIaUUpRoFU3oA2gWR0COJhgnc+JQdX2UKGgGaAloD0MIeEZblURmYkCUhpRSlGgVTegDaBZHQI4mxqEeyRl1fZQoaAZoCWgPQwhcyY6NQFZbQJSGlFKUaBVN6ANoFkdAjkCgUDdP+HV9lChoBmgJaA9DCFckJqjh0ltAlIaUUpRoFU3oA2gWR0COUkngHeJpdX2UKGgGaAloD0MIQgkzbf/SYUCUhpRSlGgVTegDaBZHQI5vecz67/Z1fZQoaAZoCWgPQwjlnNhD+3ddQJSGlFKUaBVN6ANoFkdAjqfXAEdNnHV9lChoBmgJaA9DCJ+PMuIC7FhAlIaUUpRoFU3oA2gWR0COqO2itaIOdX2UKGgGaAloD0MIhnMNMzQDUECUhpRSlGgVTegDaBZHQI65QZl4C6p1fZQoaAZoCWgPQwhMF2L1R59WQJSGlFKUaBVN6ANoFkdAjr5ox59mYnV9lChoBmgJaA9DCLpMTYI3mmFAlIaUUpRoFU3oA2gWR0COxZdE9dNWdX2UKGgGaAloD0MIgPEMGvqoV0CUhpRSlGgVTegDaBZHQI7RcpXp4bF1fZQoaAZoCWgPQwhZGY183tpgQJSGlFKUaBVN6ANoFkdAjtjKiO/+KnV9lChoBmgJaA9DCO+QYoBEcVhAlIaUUpRoFU3oA2gWR0CO4jDVpbljdX2UKGgGaAloD0MI2iCTjJwdYECUhpRSlGgVTegDaBZHQI7kPOv+wTx1fZQoaAZoCWgPQwgM5q+QuQZaQJSGlFKUaBVN6ANoFkdAju0uTq0MPXV9lChoBmgJaA9DCM9J7xtf2llAlIaUUpRoFU3oA2gWR0CO9rjZtelbdX2UKGgGaAloD0MIN/5EZcN5Y0CUhpRSlGgVTegDaBZHQI8RlozvZyx1fZQoaAZoCWgPQwhEb/HwnuNWQJSGlFKUaBVN6ANoFkdAjxHn2h7E53V9lChoBmgJaA9DCIRm170Vu19AlIaUUpRoFU3oA2gWR0CPHp7CzkZKdX2UKGgGaAloD0MIKA01Ckl7YECUhpRSlGgVTegDaBZHQI8p3kFOful1fZQoaAZoCWgPQwjGwhA5fUtsQJSGlFKUaBVNbQFoFkdAjzKG1YyO73V9lChoBmgJaA9DCAzJycStm19AlIaUUpRoFU3oA2gWR0CPQrOQhfShdX2UKGgGaAloD0MItYmT+x08V0CUhpRSlGgVTegDaBZHQI9IokJKJ2t1fZQoaAZoCWgPQwj5Tsx6MfBhQJSGlFKUaBVN6ANoFkdAj0o+Y2Kl6HV9lChoBmgJaA9DCHh/vFet1GJAlIaUUpRoFU3oA2gWR0CQIVqhUR4AdX2UKGgGaAloD0MIKV36l6R3WkCUhpRSlGgVTegDaBZHQJAmBB7eEZl1fZQoaAZoCWgPQwjilLn5RmZcQJSGlFKUaBVN6ANoFkdAkCx1vZRKpXV9lChoBmgJaA9DCFN6ppeYOGBAlIaUUpRoFU3oA2gWR0CQN2lbNbC8dX2UKGgGaAloD0MI8rbSa7PPQECUhpRSlGgVTVQBaBZHQJA6Sad+Xqt1fZQoaAZoCWgPQwgbECGuHJVjQJSGlFKUaBVN6ANoFkdAkD0nyiEg4nV9lChoBmgJaA9DCAPqzaj5sVlAlIaUUpRoFU3oA2gWR0CQRgBpHqeLdX2UKGgGaAloD0MIbcmqCDdFXkCUhpRSlGgVTegDaBZHQJBHT1UVBUt1fZQoaAZoCWgPQwiYMJqV7VBZQJSGlFKUaBVN6ANoFkdAkE6v5pJwsHV9lChoBmgJaA9DCHVVoBaDh/6/lIaUUpRoFU06AWgWR0CQYX+x4Y78dX2UKGgGaAloD0MIILjKE4hpY0CUhpRSlGgVTegDaBZHQJBuVkf9xZN1fZQoaAZoCWgPQwhUcHhBRD5jQJSGlFKUaBVN6ANoFkdAkG6sstkFwHV9lChoBmgJaA9DCJRrCmR2wjfAlIaUUpRoFU0bAWgWR0CQd1RGMGX5dX2UKGgGaAloD0MIG0ZB8Pg2V0CUhpRSlGgVTegDaBZHQJB7gcU/OdJ1fZQoaAZoCWgPQwhat0HtN6RhQJSGlFKUaBVN6ANoFkdAkIRAFkhA4XV9lChoBmgJaA9DCJUO1v85JlxAlIaUUpRoFU3oA2gWR0CQinV8kUsWdX2UKGgGaAloD0MIK4arAyDSZECUhpRSlGgVTXACaBZHQJCP7HKfWc11fZQoaAZoCWgPQwiV10roLsJfQJSGlFKUaBVN6ANoFkdAkJgWJBPbf3V9lChoBmgJaA9DCABXsmMjc11AlIaUUpRoFU3oA2gWR0CQmO3JPqLTdX2UKGgGaAloD0MIS5ARUOHUMUCUhpRSlGgVTQUBaBZHQJCZPv5P/Jh1fZQoaAZoCWgPQwiCjla1pGNWQJSGlFKUaBVN6ANoFkdAkN6sbvPTonV9lChoBmgJaA9DCFq9w+3QWFJAlIaUUpRoFU3oA2gWR0CQ4dIO6NEPdX2UKGgGaAloD0MIPnrDfeTuVUCUhpRSlGgVTegDaBZHQJDmpp48lol1fZQoaAZoCWgPQwgV5Gcj15RiQJSGlFKUaBVN6ANoFkdAkPQoVmBe5XV9lChoBmgJaA9DCL/VOnE5bWBAlIaUUpRoFU3oA2gWR0CQ+rTjNpuddX2UKGgGaAloD0MIUd7H0RzoXECUhpRSlGgVTegDaBZHQJD7rlPrOZ91fZQoaAZoCWgPQwgoY3yYPTNhQJSGlFKUaBVN6ANoFkdAkQ+lVktmMHV9lChoBmgJaA9DCBjt8UI64lRAlIaUUpRoFU3oA2gWR0CRF83dKujidX2UKGgGaAloD0MI5xpmaDzoX0CUhpRSlGgVTegDaBZHQJEX/YRNATt1fZQoaAZoCWgPQwjzxklh3q9hQJSGlFKUaBVN6ANoFkdAkR/qVlf7anV9lChoBmgJaA9DCHh8e9eghmJAlIaUUpRoFU3oA2gWR0CRJXhoM8YAdX2UKGgGaAloD0MI/gxv1uANNMCUhpRSlGgVTRkBaBZHQJEoL93r2QJ1fZQoaAZoCWgPQwiv6UFBKShgQJSGlFKUaBVN6ANoFkdAkSlGtITXa3V9lChoBmgJaA9DCLOVl/zPk2FAlIaUUpRoFU3oA2gWR0CRLJ9G7SRbdX2UKGgGaAloD0MIYHXkSGeZYECUhpRSlGgVTegDaBZHQJEy/+5vtMR1fZQoaAZoCWgPQwit9xvtuGdaQJSGlFKUaBVN6ANoFkdAkTOSvLX+VHV9lChoBmgJaA9DCLFSQUXVFVtAlIaUUpRoFU3oA2gWR0CRM9Iu5BkadWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVKQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjHwvaG9tZS9qb2hhbm5lcy8ubG9jYWwvc2hhcmUvdmlydHVhbGVudnMvZGVlcC1ybC1jbGFzcy1HVFE1WjN4VS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIx8L2hvbWUvam9oYW5uZXMvLmxvY2FsL3NoYXJlL3ZpcnR1YWxlbnZzL2RlZXAtcmwtY2xhc3MtR1RRNVozeFUvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49569a2a4f36399b0a229502ed617f35d29e5e65b5c25863c5ee0d706f0a93cb
3
+ size 84829
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93c53919c33462a9fe566c67c87060eb46e39b59131cc87514fcd11d0a6486b6
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.11.0-051100-generic-x86_64-with-glibc2.27 #202102142330 SMP Sun Feb 14 23:33:21 UTC 2021
2
+ Python: 3.9.9
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu102
5
+ GPU Enabled: True
6
+ Numpy: 1.22.3
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:458dd97c8443e8379bd617836c812477feefdf89458d91ae749c606d3d69dda5
3
+ size 260106
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 174.53302082216229, "std_reward": 27.379202916577217, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T22:17:43.852869"}