johnlockejrr commited on
Commit
89b7cdb
1 Parent(s): c3c6942

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -3
README.md CHANGED
@@ -1,3 +1,63 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: Doc-UFCN
3
+ license: mit
4
+ tags:
5
+ - Doc-UFCN
6
+ - PyTorch
7
+ - object-detection
8
+ - dla
9
+ - historical
10
+ - handwritten
11
+ - Samaritan
12
+ metrics:
13
+ - IoU
14
+ - F1
15
+ - AP@.5
16
+ - AP@.75
17
+ - AP@[.5,.95]
18
+ pipeline_tag: image-segmentation
19
+ ---
20
+
21
+
22
+ # Doc-UFCN - Samaritan manuscripts line detection
23
+
24
+ The Samaritan manuscripts line detection model predicts text lines from document images.
25
+
26
+ ## Model description
27
+
28
+ The model has been trained using the Doc-UFCN library on 10 Samaritan datasets:
29
+
30
+ It has been trained on images with their largest dimension equal to 768 pixels, keeping the original aspect ratio.
31
+
32
+ The model has been trained to reduce mergers in predictions (see the [paper](https://link.springer.com/article/10.1007/s10032-022-00395-7) for more details on training). Therefore, despite slightly low evaluation values, the model correctly detects lines on a wide variety of historical and modern manuscript documents.
33
+
34
+ ## How to use?
35
+
36
+ Please refer to the Doc-UFCN library page (https://pypi.org/project/doc-ufcn/) to use this model.
37
+
38
+ ## Cite us!
39
+
40
+ ```bibtex
41
+ @inproceedings{boillet2022,
42
+ author = {Boillet, Mélodie and Kermorvant, Christopher and Paquet, Thierry},
43
+ title = {{Robust Text Line Detection in Historical Documents: Learning and Evaluation Methods}},
44
+ booktitle = {{International Journal on Document Analysis and Recognition (IJDAR)}},
45
+ year = {2022},
46
+ month = Mar,
47
+ pages = {1433-2825},
48
+ doi = {10.1007/s10032-022-00395-7}
49
+ }
50
+ ```
51
+
52
+ ```bibtex
53
+ @inproceedings{boillet2020,
54
+ author = {Boillet, Mélodie and Kermorvant, Christopher and Paquet, Thierry},
55
+ title = {{Multiple Document Datasets Pre-training Improves Text Line Detection With
56
+ Deep Neural Networks}},
57
+ booktitle = {2020 25th International Conference on Pattern Recognition (ICPR)},
58
+ year = {2021},
59
+ month = Jan,
60
+ pages = {2134-2141},
61
+ doi = {10.1109/ICPR48806.2021.9412447}
62
+ }
63
+ ```