--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer model-index: - name: ModernRadBERT-mlm results: [] --- # ModernRadBERT-mlm This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the [`unsloth/Radiology_mini`](https://huggingface.co/datasets/unsloth/Radiology_mini) dataset. It achieves the following results on the evaluation set: - Loss: 1.6936 https://www.johnpaulett.com/2025/modernbert-radiology-fine-tuning-masked-langage-model/ **WARNING: For demonstration purposes only** ## Model description More information needed ## Intended uses & limitations **Not intended for real-world use**, was an example of MLM fine-tuning on a small radiology dataset. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8693 | 1.0 | 248 | 1.5996 | | 1.6968 | 2.0 | 496 | 1.7973 | | 1.7187 | 3.0 | 744 | 1.7232 | | 1.6518 | 4.0 | 992 | 1.7343 | | 1.5003 | 5.0 | 1240 | 1.7727 | | 1.3346 | 6.0 | 1488 | 1.7357 | | 1.4029 | 7.0 | 1736 | 1.7164 | | 1.2762 | 8.0 | 1984 | 1.7123 | | 1.2441 | 9.0 | 2232 | 1.6978 | | 1.2016 | 10.0 | 2480 | 1.7374 | | 1.1887 | 11.0 | 2728 | 1.7076 | | 1.0205 | 12.0 | 2976 | 1.6736 | | 1.0771 | 13.0 | 3224 | 1.7209 | | 1.0607 | 14.0 | 3472 | 1.6753 | | 0.909 | 15.0 | 3720 | 1.6172 | | 0.9255 | 16.0 | 3968 | 1.7418 | | 0.8676 | 17.0 | 4216 | 1.6914 | | 0.8533 | 18.0 | 4464 | 1.7310 | | 0.845 | 19.0 | 4712 | 1.7893 | | 0.869 | 20.0 | 4960 | 1.6936 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0