Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 249.46 +/- 20.60
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f247d97a4d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f247d97a560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f247d97a5f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f247d97a680>", "_build": "<function ActorCriticPolicy._build at 0x7f247d97a710>", "forward": "<function ActorCriticPolicy.forward at 0x7f247d97a7a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f247d97a830>", "_predict": "<function ActorCriticPolicy._predict at 0x7f247d97a8c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f247d97a950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f247d97a9e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f247d97aa70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f247d9bec60>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652193129.5266051, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAJpIK74G8ow/9jwEv/iwBb9lsV6+b0MDvgAAAAAAAAAAmgGXu0gPq7qMCcq6c45ztWQTg7pwb+Y5AACAPwAAgD8ARXS99rheO14vFz4p2uK9GvFEPSrHl74AAAAAAACAP1oz+z0wdpc/RhcEPxJeBr/F2CY+HB2hPgAAAAAAAAAA2iXDPa6jiLopzJU60oMGNmTXHjtUmKu5AACAPwAAgD/Newe97JHfuSrM1zrpCEA29vFqOzXy/7kAAIA/AACAP4CyNz1S8M653RDgOgSThTWnC3w5cLUBugAAgD8AAIA/AN6bPEiboLrStDG7T1Z7NgzyxbpKH+G1AACAPwAAgD8zZv48w/EiuigzaLpErGMyZuq4OZ6YhTkAAIA/AACAPzOYKz3hyIW6gx16OVpxTDTF4tS4y5uNuAAAgD8AAIA/ZnsDvUojQD6H75e9HRDevV78lb1MeUm9AAAAAAAAAADmT9q99ugRuIpXN7uW06M7oeLKu4axJrsAAIA/AACAP1p3Db5SIIq7048+u4e5n7gzwq48cPFmOgAAgD8AAIA/ZoaKu482N7qs5Ee6d3aONPGjYLv9zGg5AACAPwAAgD8AHA68uOb+uQ2M3zrAoE61c+7JuntPA7oAAIA/AACAP81SBr3DAR+6xji5OxWyXLYUeJc6njRbtQAAgD8AAIA/ALg3vSnQTLqO9yy65/37NRiPobpvwUc5AACAPwAAgD+AlqC9j6Z1updCKrredQCztd9Lu6O0QjkAAIA/AACAPzPzB7wpTGe6ZhUFulf7jLX1TwM7nSQZOQAAgD8AAIA/zXRFOxSYnLpF3n+6gOxstq9gCrp9z5M5AACAPwAAgD9m2v07ez6PusuklDXe59wwC9Y/O3/WtLQAAIA/AACAPzMYhryPBjq6MIoeOBRHtDOVfpY67Y03twAAgD8AAIA/5ssmvfYkPLp+FH82MWtFMeR5sDsfmJe1AACAPwAAgD9N8h69KbhAukNfrLqJVmq1ikCcOMDWxjkAAIA/AACAP5qxJLwpZAq6daxMugzPzrUzczI78mZtOQAAgD8AAIA/M4BoPRZokD/UNBe8l4L9vmSN6j2AmIS8AAAAAAAAAAAAMHc77GmDufbOkzjvZ4SyGvtOuzuDrrcAAIA/AACAPwAoQ70pVEG6Nt4SOyzborRuLyA7UrLCswAAgD8AAIA/GpQuPSmwIbqX2Ka6VwDFtRnQQLpYT785AACAPwAAgD9aG6o9SL+FuhvhWjsjDg65GcqLOnIyDrgAAIA/AACAP+Y8WT7sYV4/y18aPtoH4b6ocrM+SaeQvQAAAAAAAAAAZh4hvcgiiD+aDi2+J+oLv+szBD2SYVC9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAfvo1BX5Z0CUhpRSlIwBbJRN6AOMAXSUR0CQXPz6JqIrdX2UKGgGaAloD0MI4Ep2bIQZZ0CUhpRSlGgVTegDaBZHQJBd1yvLX+V1fZQoaAZoCWgPQwiuYYbGE2pbQJSGlFKUaBVN6ANoFkdAkGFgUlAu7HV9lChoBmgJaA9DCG7CvTLvhWFAlIaUUpRoFU3oA2gWR0CQaPaVlf7adX2UKGgGaAloD0MIob36eOhraECUhpRSlGgVTegDaBZHQJBpxPGhmGx1fZQoaAZoCWgPQwgDPj+MEE9nQJSGlFKUaBVN6ANoFkdAkG+wdwNsnHV9lChoBmgJaA9DCLvyWZ4HCF9AlIaUUpRoFU3oA2gWR0CQb/ogmqo7dX2UKGgGaAloD0MIxjNo6J8HZUCUhpRSlGgVTegDaBZHQJB0UfNiYsx1fZQoaAZoCWgPQwhHADeLl21hQJSGlFKUaBVN6ANoFkdAkIHKLsKLKnV9lChoBmgJaA9DCFLSw9DqUWZAlIaUUpRoFU3oA2gWR0CQhwjuKGcndX2UKGgGaAloD0MIRx/zAQERZUCUhpRSlGgVTegDaBZHQJCIbHHWBjF1fZQoaAZoCWgPQwifVWZK6yJmQJSGlFKUaBVN6ANoFkdAkIis/IKc/nV9lChoBmgJaA9DCBzr4jaadGRAlIaUUpRoFU3oA2gWR0CQid86mwaBdX2UKGgGaAloD0MIhQg4hCqRZkCUhpRSlGgVTegDaBZHQJCNjXumaYx1fZQoaAZoCWgPQwjH9lrQ+7tgQJSGlFKUaBVN6ANoFkdAkJUf5HmRvHV9lChoBmgJaA9DCMNHxJTI4GZAlIaUUpRoFU3oA2gWR0CQlaYfW+XadX2UKGgGaAloD0MIzm4tk+FwZUCUhpRSlGgVTegDaBZHQJCWLdM0xdp1fZQoaAZoCWgPQwibkqzD0VBlQJSGlFKUaBVN6ANoFkdAkJfEnssxwnV9lChoBmgJaA9DCP1JfO6EZ2ZAlIaUUpRoFU3oA2gWR0CQnYSLqD9PdX2UKGgGaAloD0MIMPMd/ET3ZUCUhpRSlGgVTegDaBZHQJCj81UEPlN1fZQoaAZoCWgPQwg3/dmPlJZnQJSGlFKUaBVN6ANoFkdAkKP/BWPtD3V9lChoBmgJaA9DCFu0AG2rKGZAlIaUUpRoFU3oA2gWR0CQo/lU6xPgdX2UKGgGaAloD0MIjdKlf0mHXkCUhpRSlGgVTegDaBZHQJCo34rSVnp1fZQoaAZoCWgPQwiIn/8ePEdkQJSGlFKUaBVN6ANoFkdAkKtb1VYISnV9lChoBmgJaA9DCHxjCACO+2dAlIaUUpRoFU3oA2gWR0CQtZXUH6dldX2UKGgGaAloD0MI1QeSd44fY0CUhpRSlGgVTegDaBZHQJC2xsj3VTd1fZQoaAZoCWgPQwizXDY6515hQJSGlFKUaBVN6ANoFkdAkLct7fHgg3V9lChoBmgJaA9DCEYnS613q2BAlIaUUpRoFU3oA2gWR0CQt81oQFs6dX2UKGgGaAloD0MI9+eiIWNaZkCUhpRSlGgVTegDaBZHQJDAAX9BKL91fZQoaAZoCWgPQwgsDmd+tXViQJSGlFKUaBVN6ANoFkdAkMaj/ZM+NnV9lChoBmgJaA9DCHrE6LmFIWRAlIaUUpRoFU3oA2gWR0CQyJgHNX5ndX2UKGgGaAloD0MIuMoTCLtvZkCUhpRSlGgVTegDaBZHQJDcJUNrj5t1fZQoaAZoCWgPQwiiDFUxlTVmQJSGlFKUaBVN6ANoFkdAkQfvJA+pwXV9lChoBmgJaA9DCI9VSs/0/WVAlIaUUpRoFU3oA2gWR0CRCMSCOFQEdX2UKGgGaAloD0MIwO0JEtv2YkCUhpRSlGgVTegDaBZHQJEMhh8Yyft1fZQoaAZoCWgPQwjlQXqKHDhnQJSGlFKUaBVN6ANoFkdAkRREQ5FPSHV9lChoBmgJaA9DCJz51Rwgz2JAlIaUUpRoFU3oA2gWR0CRFRGbkOqedX2UKGgGaAloD0MIDi4dc54qZUCUhpRSlGgVTegDaBZHQJEa2U9pyp91fZQoaAZoCWgPQwg8TPvm/jZeQJSGlFKUaBVN6ANoFkdAkRsdWhh6SnV9lChoBmgJaA9DCCXnxB7aIWRAlIaUUpRoFU3oA2gWR0CRH1ezD4xldX2UKGgGaAloD0MIwFq1a0IoYECUhpRSlGgVTegDaBZHQJEs+p5u63B1fZQoaAZoCWgPQwjVd35Rgg5oQJSGlFKUaBVN6ANoFkdAkTJHRTjvNXV9lChoBmgJaA9DCHTqymf5WGFAlIaUUpRoFU3oA2gWR0CRM8Ks+3YudX2UKGgGaAloD0MI8s8M4gMZYkCUhpRSlGgVTegDaBZHQJE0DFGXokl1fZQoaAZoCWgPQwgJ4dHGkYNhQJSGlFKUaBVN6ANoFkdAkTVa7ZnL73V9lChoBmgJaA9DCO28jc2O72JAlIaUUpRoFU3oA2gWR0CROWWvbGm2dX2UKGgGaAloD0MI6pJxjOSOYECUhpRSlGgVTegDaBZHQJFBZQDV6NV1fZQoaAZoCWgPQwhoIQGjS7xjQJSGlFKUaBVN6ANoFkdAkUHq6FuejHV9lChoBmgJaA9DCEOOrWeIYGNAlIaUUpRoFU3oA2gWR0CRQnm/336AdX2UKGgGaAloD0MI7kEIyBdQYECUhpRSlGgVTegDaBZHQJFEGWdEsrd1fZQoaAZoCWgPQwg7Un3nF2JjQJSGlFKUaBVN6ANoFkdAkUnjs6aLGnV9lChoBmgJaA9DCFImNbQBWWNAlIaUUpRoFU3oA2gWR0CRUJ9bHIZJdX2UKGgGaAloD0MIKH/3jho/Z0CUhpRSlGgVTegDaBZHQJFQq4TbnHN1fZQoaAZoCWgPQwgsZ++MNrxhQJSGlFKUaBVN6ANoFkdAkVCmIj4YanV9lChoBmgJaA9DCOSG3023imBAlIaUUpRoFU3oA2gWR0CRVcJOWSlndX2UKGgGaAloD0MIc7hWe1gaY0CUhpRSlGgVTegDaBZHQJFYR9srNGF1fZQoaAZoCWgPQwiCyCJNvI1kQJSGlFKUaBVN6ANoFkdAkWKPra/RFHV9lChoBmgJaA9DCMhESrN5/WNAlIaUUpRoFU3oA2gWR0CRY8ATZg5SdX2UKGgGaAloD0MIN+DzwwiDZUCUhpRSlGgVTegDaBZHQJFkJNQCSzR1fZQoaAZoCWgPQwj2KFyPQutnQJSGlFKUaBVN6ANoFkdAkWS3rleWwHV9lChoBmgJaA9DCCsVVFR9imRAlIaUUpRoFU3oA2gWR0CRbMJ/XoTxdX2UKGgGaAloD0MIGGAfnboRZ0CUhpRSlGgVTegDaBZHQJFzXfVI7Nl1fZQoaAZoCWgPQwjknq7u2ORgQJSGlFKUaBVN6ANoFkdAkXVO9zwMIHV9lChoBmgJaA9DCBtIF5tWbmRAlIaUUpRoFU3oA2gWR0CRie3OfNA1dX2UKGgGaAloD0MIRn2SO2wGbkCUhpRSlGgVTfcBaBZHQJGNFbOeJ551fZQoaAZoCWgPQwjuQnOdRthjQJSGlFKUaBVN6ANoFkdAkY19LYf4h3V9lChoBmgJaA9DCLQevkwU2GNAlIaUUpRoFU3oA2gWR0CRuDk2xY7rdX2UKGgGaAloD0MIxEDXvoBXXkCUhpRSlGgVTegDaBZHQJG7ycqe9SN1fZQoaAZoCWgPQwg02qoksmxiQJSGlFKUaBVN6ANoFkdAkcNoqgAZKnV9lChoBmgJaA9DCG4164xvMWRAlIaUUpRoFU3oA2gWR0CRxEAfuCwsdX2UKGgGaAloD0MIi08BMJ4RZECUhpRSlGgVTegDaBZHQJHJ3UkOZst1fZQoaAZoCWgPQwjy0He3sjNeQJSGlFKUaBVN6ANoFkdAkconuJDVpnV9lChoBmgJaA9DCCRfCaTEm2JAlIaUUpRoFU3oA2gWR0CRzlMPjGT+dX2UKGgGaAloD0MIrcH7qtwkZ0CUhpRSlGgVTegDaBZHQJHbSIKtxMp1fZQoaAZoCWgPQwibAS7IlkJgQJSGlFKUaBVN6ANoFkdAkeBtl/Yra3V9lChoBmgJaA9DCD4FwHgGpGZAlIaUUpRoFU3oA2gWR0CR4bU83dbgdX2UKGgGaAloD0MINnaJ6q2+Y0CUhpRSlGgVTegDaBZHQJHh/myPdVN1fZQoaAZoCWgPQwizP1Bu2wNkQJSGlFKUaBVN6ANoFkdAkeNS88La3HV9lChoBmgJaA9DCKqB5nNuW2FAlIaUUpRoFU3oA2gWR0CR51xZuAI6dX2UKGgGaAloD0MIeT2YFB+MZECUhpRSlGgVTegDaBZHQJHu/VYp2EF1fZQoaAZoCWgPQwiefeVB+tFnQJSGlFKUaBVN6ANoFkdAke+KJMxoI3V9lChoBmgJaA9DCHXo9Lybw2VAlIaUUpRoFU3oA2gWR0CR8BH09QoDdX2UKGgGaAloD0MIVI1eDVCvZECUhpRSlGgVTegDaBZHQJHxnz3AVO91fZQoaAZoCWgPQwiYhXZOs+BgQJSGlFKUaBVN6ANoFkdAkf5qlHjIaXV9lChoBmgJaA9DCA4QzNHjXWFAlIaUUpRoFU3oA2gWR0CR/nlhPTG6dX2UKGgGaAloD0MIMunvpXANZUCUhpRSlGgVTegDaBZHQJH+dfdAPd51fZQoaAZoCWgPQwjaykv+J+ZeQJSGlFKUaBVN6ANoFkdAkgPYSxqwhXV9lChoBmgJaA9DCAUU6ukjlGFAlIaUUpRoFU3oA2gWR0CSBnzv7WNFdX2UKGgGaAloD0MI/u2yX/dMbkCUhpRSlGgVTVcDaBZHQJIIyz/p+tt1fZQoaAZoCWgPQwgcDHVY4WlhQJSGlFKUaBVN6ANoFkdAkhE56+nIhnV9lChoBmgJaA9DCHmxMEROhl5AlIaUUpRoFU3oA2gWR0CSEnK/VRUFdX2UKGgGaAloD0MIWrvtQnOVZECUhpRSlGgVTegDaBZHQJIS2kj5bhZ1fZQoaAZoCWgPQwghkEsc+W5kQJSGlFKUaBVN6ANoFkdAkhNyFj/dZnV9lChoBmgJaA9DCOmBj8EKgmNAlIaUUpRoFU3oA2gWR0CSIttV7x/edX2UKGgGaAloD0MIPSmTGloCY0CUhpRSlGgVTegDaBZHQJIlDF4s3AF1fZQoaAZoCWgPQwgNx/MZ0CRvQJSGlFKUaBVNDwJoFkdAkjkOclPac3V9lChoBmgJaA9DCGAgCJChoWZAlIaUUpRoFU3oA2gWR0CSOTiNbTttdX2UKGgGaAloD0MIb6DAO3nCYkCUhpRSlGgVTegDaBZHQJI8Qt6HCXR1fZQoaAZoCWgPQwiXAz3UNj5mQJSGlFKUaBVN6ANoFkdAkjykRnOB2HV9lChoBmgJaA9DCNRkxtvKi2BAlIaUUpRoFU3oA2gWR0CSPX8rI5o5dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 186, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0791a0e3560c2829d13f3d50d7b65f166a87c9e6a09645ff65c2c836d1fc6829
|
3 |
+
size 144751
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f247d97a4d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f247d97a560>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f247d97a5f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f247d97a680>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f247d97a710>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f247d97a7a0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f247d97a830>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f247d97a8c0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f247d97a950>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f247d97a9e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f247d97aa70>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f247d9bec60>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 32,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652193129.5266051,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAJpIK74G8ow/9jwEv/iwBb9lsV6+b0MDvgAAAAAAAAAAmgGXu0gPq7qMCcq6c45ztWQTg7pwb+Y5AACAPwAAgD8ARXS99rheO14vFz4p2uK9GvFEPSrHl74AAAAAAACAP1oz+z0wdpc/RhcEPxJeBr/F2CY+HB2hPgAAAAAAAAAA2iXDPa6jiLopzJU60oMGNmTXHjtUmKu5AACAPwAAgD/Newe97JHfuSrM1zrpCEA29vFqOzXy/7kAAIA/AACAP4CyNz1S8M653RDgOgSThTWnC3w5cLUBugAAgD8AAIA/AN6bPEiboLrStDG7T1Z7NgzyxbpKH+G1AACAPwAAgD8zZv48w/EiuigzaLpErGMyZuq4OZ6YhTkAAIA/AACAPzOYKz3hyIW6gx16OVpxTDTF4tS4y5uNuAAAgD8AAIA/ZnsDvUojQD6H75e9HRDevV78lb1MeUm9AAAAAAAAAADmT9q99ugRuIpXN7uW06M7oeLKu4axJrsAAIA/AACAP1p3Db5SIIq7048+u4e5n7gzwq48cPFmOgAAgD8AAIA/ZoaKu482N7qs5Ee6d3aONPGjYLv9zGg5AACAPwAAgD8AHA68uOb+uQ2M3zrAoE61c+7JuntPA7oAAIA/AACAP81SBr3DAR+6xji5OxWyXLYUeJc6njRbtQAAgD8AAIA/ALg3vSnQTLqO9yy65/37NRiPobpvwUc5AACAPwAAgD+AlqC9j6Z1updCKrredQCztd9Lu6O0QjkAAIA/AACAPzPzB7wpTGe6ZhUFulf7jLX1TwM7nSQZOQAAgD8AAIA/zXRFOxSYnLpF3n+6gOxstq9gCrp9z5M5AACAPwAAgD9m2v07ez6PusuklDXe59wwC9Y/O3/WtLQAAIA/AACAPzMYhryPBjq6MIoeOBRHtDOVfpY67Y03twAAgD8AAIA/5ssmvfYkPLp+FH82MWtFMeR5sDsfmJe1AACAPwAAgD9N8h69KbhAukNfrLqJVmq1ikCcOMDWxjkAAIA/AACAP5qxJLwpZAq6daxMugzPzrUzczI78mZtOQAAgD8AAIA/M4BoPRZokD/UNBe8l4L9vmSN6j2AmIS8AAAAAAAAAAAAMHc77GmDufbOkzjvZ4SyGvtOuzuDrrcAAIA/AACAPwAoQ70pVEG6Nt4SOyzborRuLyA7UrLCswAAgD8AAIA/GpQuPSmwIbqX2Ka6VwDFtRnQQLpYT785AACAPwAAgD9aG6o9SL+FuhvhWjsjDg65GcqLOnIyDrgAAIA/AACAP+Y8WT7sYV4/y18aPtoH4b6ocrM+SaeQvQAAAAAAAAAAZh4hvcgiiD+aDi2+J+oLv+szBD2SYVC9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAfvo1BX5Z0CUhpRSlIwBbJRN6AOMAXSUR0CQXPz6JqIrdX2UKGgGaAloD0MI4Ep2bIQZZ0CUhpRSlGgVTegDaBZHQJBd1yvLX+V1fZQoaAZoCWgPQwiuYYbGE2pbQJSGlFKUaBVN6ANoFkdAkGFgUlAu7HV9lChoBmgJaA9DCG7CvTLvhWFAlIaUUpRoFU3oA2gWR0CQaPaVlf7adX2UKGgGaAloD0MIob36eOhraECUhpRSlGgVTegDaBZHQJBpxPGhmGx1fZQoaAZoCWgPQwgDPj+MEE9nQJSGlFKUaBVN6ANoFkdAkG+wdwNsnHV9lChoBmgJaA9DCLvyWZ4HCF9AlIaUUpRoFU3oA2gWR0CQb/ogmqo7dX2UKGgGaAloD0MIxjNo6J8HZUCUhpRSlGgVTegDaBZHQJB0UfNiYsx1fZQoaAZoCWgPQwhHADeLl21hQJSGlFKUaBVN6ANoFkdAkIHKLsKLKnV9lChoBmgJaA9DCFLSw9DqUWZAlIaUUpRoFU3oA2gWR0CQhwjuKGcndX2UKGgGaAloD0MIRx/zAQERZUCUhpRSlGgVTegDaBZHQJCIbHHWBjF1fZQoaAZoCWgPQwifVWZK6yJmQJSGlFKUaBVN6ANoFkdAkIis/IKc/nV9lChoBmgJaA9DCBzr4jaadGRAlIaUUpRoFU3oA2gWR0CQid86mwaBdX2UKGgGaAloD0MIhQg4hCqRZkCUhpRSlGgVTegDaBZHQJCNjXumaYx1fZQoaAZoCWgPQwjH9lrQ+7tgQJSGlFKUaBVN6ANoFkdAkJUf5HmRvHV9lChoBmgJaA9DCMNHxJTI4GZAlIaUUpRoFU3oA2gWR0CQlaYfW+XadX2UKGgGaAloD0MIzm4tk+FwZUCUhpRSlGgVTegDaBZHQJCWLdM0xdp1fZQoaAZoCWgPQwibkqzD0VBlQJSGlFKUaBVN6ANoFkdAkJfEnssxwnV9lChoBmgJaA9DCP1JfO6EZ2ZAlIaUUpRoFU3oA2gWR0CQnYSLqD9PdX2UKGgGaAloD0MIMPMd/ET3ZUCUhpRSlGgVTegDaBZHQJCj81UEPlN1fZQoaAZoCWgPQwg3/dmPlJZnQJSGlFKUaBVN6ANoFkdAkKP/BWPtD3V9lChoBmgJaA9DCFu0AG2rKGZAlIaUUpRoFU3oA2gWR0CQo/lU6xPgdX2UKGgGaAloD0MIjdKlf0mHXkCUhpRSlGgVTegDaBZHQJCo34rSVnp1fZQoaAZoCWgPQwiIn/8ePEdkQJSGlFKUaBVN6ANoFkdAkKtb1VYISnV9lChoBmgJaA9DCHxjCACO+2dAlIaUUpRoFU3oA2gWR0CQtZXUH6dldX2UKGgGaAloD0MI1QeSd44fY0CUhpRSlGgVTegDaBZHQJC2xsj3VTd1fZQoaAZoCWgPQwizXDY6515hQJSGlFKUaBVN6ANoFkdAkLct7fHgg3V9lChoBmgJaA9DCEYnS613q2BAlIaUUpRoFU3oA2gWR0CQt81oQFs6dX2UKGgGaAloD0MI9+eiIWNaZkCUhpRSlGgVTegDaBZHQJDAAX9BKL91fZQoaAZoCWgPQwgsDmd+tXViQJSGlFKUaBVN6ANoFkdAkMaj/ZM+NnV9lChoBmgJaA9DCHrE6LmFIWRAlIaUUpRoFU3oA2gWR0CQyJgHNX5ndX2UKGgGaAloD0MIuMoTCLtvZkCUhpRSlGgVTegDaBZHQJDcJUNrj5t1fZQoaAZoCWgPQwiiDFUxlTVmQJSGlFKUaBVN6ANoFkdAkQfvJA+pwXV9lChoBmgJaA9DCI9VSs/0/WVAlIaUUpRoFU3oA2gWR0CRCMSCOFQEdX2UKGgGaAloD0MIwO0JEtv2YkCUhpRSlGgVTegDaBZHQJEMhh8Yyft1fZQoaAZoCWgPQwjlQXqKHDhnQJSGlFKUaBVN6ANoFkdAkRREQ5FPSHV9lChoBmgJaA9DCJz51Rwgz2JAlIaUUpRoFU3oA2gWR0CRFRGbkOqedX2UKGgGaAloD0MIDi4dc54qZUCUhpRSlGgVTegDaBZHQJEa2U9pyp91fZQoaAZoCWgPQwg8TPvm/jZeQJSGlFKUaBVN6ANoFkdAkRsdWhh6SnV9lChoBmgJaA9DCCXnxB7aIWRAlIaUUpRoFU3oA2gWR0CRH1ezD4xldX2UKGgGaAloD0MIwFq1a0IoYECUhpRSlGgVTegDaBZHQJEs+p5u63B1fZQoaAZoCWgPQwjVd35Rgg5oQJSGlFKUaBVN6ANoFkdAkTJHRTjvNXV9lChoBmgJaA9DCHTqymf5WGFAlIaUUpRoFU3oA2gWR0CRM8Ks+3YudX2UKGgGaAloD0MI8s8M4gMZYkCUhpRSlGgVTegDaBZHQJE0DFGXokl1fZQoaAZoCWgPQwgJ4dHGkYNhQJSGlFKUaBVN6ANoFkdAkTVa7ZnL73V9lChoBmgJaA9DCO28jc2O72JAlIaUUpRoFU3oA2gWR0CROWWvbGm2dX2UKGgGaAloD0MI6pJxjOSOYECUhpRSlGgVTegDaBZHQJFBZQDV6NV1fZQoaAZoCWgPQwhoIQGjS7xjQJSGlFKUaBVN6ANoFkdAkUHq6FuejHV9lChoBmgJaA9DCEOOrWeIYGNAlIaUUpRoFU3oA2gWR0CRQnm/336AdX2UKGgGaAloD0MI7kEIyBdQYECUhpRSlGgVTegDaBZHQJFEGWdEsrd1fZQoaAZoCWgPQwg7Un3nF2JjQJSGlFKUaBVN6ANoFkdAkUnjs6aLGnV9lChoBmgJaA9DCFImNbQBWWNAlIaUUpRoFU3oA2gWR0CRUJ9bHIZJdX2UKGgGaAloD0MIKH/3jho/Z0CUhpRSlGgVTegDaBZHQJFQq4TbnHN1fZQoaAZoCWgPQwgsZ++MNrxhQJSGlFKUaBVN6ANoFkdAkVCmIj4YanV9lChoBmgJaA9DCOSG3023imBAlIaUUpRoFU3oA2gWR0CRVcJOWSlndX2UKGgGaAloD0MIc7hWe1gaY0CUhpRSlGgVTegDaBZHQJFYR9srNGF1fZQoaAZoCWgPQwiCyCJNvI1kQJSGlFKUaBVN6ANoFkdAkWKPra/RFHV9lChoBmgJaA9DCMhESrN5/WNAlIaUUpRoFU3oA2gWR0CRY8ATZg5SdX2UKGgGaAloD0MIN+DzwwiDZUCUhpRSlGgVTegDaBZHQJFkJNQCSzR1fZQoaAZoCWgPQwj2KFyPQutnQJSGlFKUaBVN6ANoFkdAkWS3rleWwHV9lChoBmgJaA9DCCsVVFR9imRAlIaUUpRoFU3oA2gWR0CRbMJ/XoTxdX2UKGgGaAloD0MIGGAfnboRZ0CUhpRSlGgVTegDaBZHQJFzXfVI7Nl1fZQoaAZoCWgPQwjknq7u2ORgQJSGlFKUaBVN6ANoFkdAkXVO9zwMIHV9lChoBmgJaA9DCBtIF5tWbmRAlIaUUpRoFU3oA2gWR0CRie3OfNA1dX2UKGgGaAloD0MIRn2SO2wGbkCUhpRSlGgVTfcBaBZHQJGNFbOeJ551fZQoaAZoCWgPQwjuQnOdRthjQJSGlFKUaBVN6ANoFkdAkY19LYf4h3V9lChoBmgJaA9DCLQevkwU2GNAlIaUUpRoFU3oA2gWR0CRuDk2xY7rdX2UKGgGaAloD0MIxEDXvoBXXkCUhpRSlGgVTegDaBZHQJG7ycqe9SN1fZQoaAZoCWgPQwg02qoksmxiQJSGlFKUaBVN6ANoFkdAkcNoqgAZKnV9lChoBmgJaA9DCG4164xvMWRAlIaUUpRoFU3oA2gWR0CRxEAfuCwsdX2UKGgGaAloD0MIi08BMJ4RZECUhpRSlGgVTegDaBZHQJHJ3UkOZst1fZQoaAZoCWgPQwjy0He3sjNeQJSGlFKUaBVN6ANoFkdAkconuJDVpnV9lChoBmgJaA9DCCRfCaTEm2JAlIaUUpRoFU3oA2gWR0CRzlMPjGT+dX2UKGgGaAloD0MIrcH7qtwkZ0CUhpRSlGgVTegDaBZHQJHbSIKtxMp1fZQoaAZoCWgPQwibAS7IlkJgQJSGlFKUaBVN6ANoFkdAkeBtl/Yra3V9lChoBmgJaA9DCD4FwHgGpGZAlIaUUpRoFU3oA2gWR0CR4bU83dbgdX2UKGgGaAloD0MINnaJ6q2+Y0CUhpRSlGgVTegDaBZHQJHh/myPdVN1fZQoaAZoCWgPQwizP1Bu2wNkQJSGlFKUaBVN6ANoFkdAkeNS88La3HV9lChoBmgJaA9DCKqB5nNuW2FAlIaUUpRoFU3oA2gWR0CR51xZuAI6dX2UKGgGaAloD0MIeT2YFB+MZECUhpRSlGgVTegDaBZHQJHu/VYp2EF1fZQoaAZoCWgPQwiefeVB+tFnQJSGlFKUaBVN6ANoFkdAke+KJMxoI3V9lChoBmgJaA9DCHXo9Lybw2VAlIaUUpRoFU3oA2gWR0CR8BH09QoDdX2UKGgGaAloD0MIVI1eDVCvZECUhpRSlGgVTegDaBZHQJHxnz3AVO91fZQoaAZoCWgPQwiYhXZOs+BgQJSGlFKUaBVN6ANoFkdAkf5qlHjIaXV9lChoBmgJaA9DCA4QzNHjXWFAlIaUUpRoFU3oA2gWR0CR/nlhPTG6dX2UKGgGaAloD0MIMunvpXANZUCUhpRSlGgVTegDaBZHQJH+dfdAPd51fZQoaAZoCWgPQwjaykv+J+ZeQJSGlFKUaBVN6ANoFkdAkgPYSxqwhXV9lChoBmgJaA9DCAUU6ukjlGFAlIaUUpRoFU3oA2gWR0CSBnzv7WNFdX2UKGgGaAloD0MI/u2yX/dMbkCUhpRSlGgVTVcDaBZHQJIIyz/p+tt1fZQoaAZoCWgPQwgcDHVY4WlhQJSGlFKUaBVN6ANoFkdAkhE56+nIhnV9lChoBmgJaA9DCHmxMEROhl5AlIaUUpRoFU3oA2gWR0CSEnK/VRUFdX2UKGgGaAloD0MIWrvtQnOVZECUhpRSlGgVTegDaBZHQJIS2kj5bhZ1fZQoaAZoCWgPQwghkEsc+W5kQJSGlFKUaBVN6ANoFkdAkhNyFj/dZnV9lChoBmgJaA9DCOmBj8EKgmNAlIaUUpRoFU3oA2gWR0CSIttV7x/edX2UKGgGaAloD0MIPSmTGloCY0CUhpRSlGgVTegDaBZHQJIlDF4s3AF1fZQoaAZoCWgPQwgNx/MZ0CRvQJSGlFKUaBVNDwJoFkdAkjkOclPac3V9lChoBmgJaA9DCGAgCJChoWZAlIaUUpRoFU3oA2gWR0CSOTiNbTttdX2UKGgGaAloD0MIb6DAO3nCYkCUhpRSlGgVTegDaBZHQJI8Qt6HCXR1fZQoaAZoCWgPQwiXAz3UNj5mQJSGlFKUaBVN6ANoFkdAkjykRnOB2HV9lChoBmgJaA9DCNRkxtvKi2BAlIaUUpRoFU3oA2gWR0CSPX8rI5o5dWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 186,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 128,
|
86 |
+
"n_epochs": 6,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ba6dec2170d792004177c33c3d322f46e23b9b5ffbb744bd5cde2ed0de4c2b9
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f5655be394db3a34fa74c407e7a6ce22c4afed34384b07268a0448481192927
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c11b3507fbc325e658cbd169d28cb723d36c0a3f128bcbe7c890aa197c01e1af
|
3 |
+
size 232590
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 249.46163051443682, "std_reward": 20.597928464861905, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-10T15:13:00.177172"}
|