jonalkw commited on
Commit
0a30901
·
1 Parent(s): b48241a

returning to course

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 262.60 +/- 18.61
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 247.79 +/- 19.77
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5e4853aca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5e4853ad30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5e4853adc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5e4853ae50>", "_build": "<function ActorCriticPolicy._build at 0x7f5e4853aee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5e4853af70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5e4853f040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5e4853f0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5e4853f160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5e4853f1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5e4853f280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5e48537660>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672352894627033243, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIpEer4Gxjs/Tp40PmKPbr4ajt68VVIDPQAAAAAAAAAADWhFvk0tCD/FVyM+pn1XvjpukztpLsw9AAAAAAAAAACtajM+Q1PePpm8Ir61b5K+OZAXPYPra70AAAAAAAAAAAA3zjx71qi6CzMUOHMq/DIOIW24UK8ptwAAgD8AAIA/M/N/u7jQ4D2+A5q9rgAwvuqdXbxayvO7AAAAAAAAAACadb086SK4P+F8RD+7O8Q+msWjvMl7u70AAAAAAAAAAABYJ7wp/Um8yvxsuzo/tjyOgqg9Cp+TvQAAgD8AAIA/Gn0LvXHCX7v+eoS6MrSOPJfofDwFGXW9AACAPwAAgD9N52U9NMrqPcFErb0/nNe9ZHeEOqVcDz0AAAAAAAAAALOU4T1UBII+4u+rvN2rg76oka47CsVMPQAAAAAAAAAAYFBCvjtfkLydGxC7rec2uQ8iAT5Wszk6AACAPwAAgD+NWfI9pDzWPur3wr39/4++tIedvPQIKD0AAAAAAAAAAAY5ej5piaI/Dg0YP4I7sL7MtKQ+v3/IPQAAAAAAAAAAusuIPmBQkz8oJuA+EAS2vrfttj5DMKo8AAAAAAAAAAAAdAE8cFO0P3bfTD9EXsG9WeQVvI2gOb4AAAAAAAAAADPnZTxIy6+6mhWbNBVkaS8wz804mkNhswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkC3L1+UGbUCUhpRSlIwBbJRNogGMAXSUR0CecJ3wkPc0dX2UKGgGaAloD0MIkQvO4K/UcECUhpRSlGgVTfYBaBZHQJ5zhqi48U51fZQoaAZoCWgPQwghdTv7yi1LQJSGlFKUaBVL7GgWR0Cec+Eal1r7dX2UKGgGaAloD0MIDThLyfIncUCUhpRSlGgVTZsBaBZHQJ50XMkhRqJ1fZQoaAZoCWgPQwjC+j+H+WI+QJSGlFKUaBVLsWgWR0CedKeizsyBdX2UKGgGaAloD0MIqtTsgdbAakCUhpRSlGgVTcgCaBZHQJ53Rea8Yht1fZQoaAZoCWgPQwiZ9WIopxNiQJSGlFKUaBVN6ANoFkdAnni5CfHxSnV9lChoBmgJaA9DCMDqyJHO3kdAlIaUUpRoFU0FAWgWR0CeeZbFjurqdX2UKGgGaAloD0MIkC3L1yV4cECUhpRSlGgVTXsBaBZHQJ58FZU1hst1fZQoaAZoCWgPQwiXH7jKE89wQJSGlFKUaBVNdQFoFkdAnn0rlRxcV3V9lChoBmgJaA9DCHkj88ifgm5AlIaUUpRoFU3tAWgWR0CegFNvwVj7dX2UKGgGaAloD0MIb7ckB+xfb0CUhpRSlGgVTd8BaBZHQJ6Dr3IuGsV1fZQoaAZoCWgPQwhAoDNpU0NxQJSGlFKUaBVNPAJoFkdAnoQLYXfqHHV9lChoBmgJaA9DCFQ4glRKm3JAlIaUUpRoFU30AWgWR0CehMGj9GZvdX2UKGgGaAloD0MI/B2KAv3wbkCUhpRSlGgVTXYBaBZHQJ6E8/X5FgF1fZQoaAZoCWgPQwiSzyue+iNwQJSGlFKUaBVNOAJoFkdAnoe2LDQ7cXV9lChoBmgJaA9DCELuIkyROnBAlIaUUpRoFU3yAWgWR0CeibC+lCTmdX2UKGgGaAloD0MIxK9Yw0XlbECUhpRSlGgVTaUBaBZHQJ6Ku/nGKht1fZQoaAZoCWgPQwgaGHlZk9lxQJSGlFKUaBVNRwNoFkdAnoyeqzZ6EHV9lChoBmgJaA9DCPXx0Hd3ynFAlIaUUpRoFU1mAWgWR0CejQSJTER8dX2UKGgGaAloD0MIMQxYclVbcUCUhpRSlGgVTXwBaBZHQJ6O2qYJE6V1fZQoaAZoCWgPQwhlcf+R6ZVwQJSGlFKUaBVNZAJoFkdAno8XktEofHV9lChoBmgJaA9DCIxLVdrid3JAlIaUUpRoFU1MAWgWR0Cej3enQ6ZIdX2UKGgGaAloD0MIw7ewbrwWVECUhpRSlGgVTSgBaBZHQJ6Qi56MR6F1fZQoaAZoCWgPQwhp/S0BuMdwQJSGlFKUaBVNJwJoFkdAnpIU6DGtIXV9lChoBmgJaA9DCJG1hlK74HBAlIaUUpRoFU1nAWgWR0CepokxASnMdX2UKGgGaAloD0MIjnkdcYgPcECUhpRSlGgVTaUDaBZHQJ6m6bPQfIV1fZQoaAZoCWgPQwiBzM6i99xxQJSGlFKUaBVNnQFoFkdAnqgMsUZeiXV9lChoBmgJaA9DCNqrj4c+km1AlIaUUpRoFU1FA2gWR0CeqVqASWZ7dX2UKGgGaAloD0MI0v2cgnxSbkCUhpRSlGgVTcMBaBZHQJ6qUMnZ00Z1fZQoaAZoCWgPQwiz7Elgc1ZvQJSGlFKUaBVNlgFoFkdAnq2P5k9U0nV9lChoBmgJaA9DCNZwkXs63GpAlIaUUpRoFU0rA2gWR0CeroC0F8ohdX2UKGgGaAloD0MIM2q+Sr4vbUCUhpRSlGgVTcUBaBZHQJ6umQIUrTZ1fZQoaAZoCWgPQwhy/bs+c31xQJSGlFKUaBVNcgFoFkdAnrEmozeoDXV9lChoBmgJaA9DCNqM0xAVa3JAlIaUUpRoFU0PAWgWR0Cesfo9LYf5dX2UKGgGaAloD0MIij+KOnOkcECUhpRSlGgVTa8BaBZHQJ6zknAqNId1fZQoaAZoCWgPQwhAMbJkjtdvQJSGlFKUaBVNPgJoFkdAnrfIFvAGjnV9lChoBmgJaA9DCABV3LiFIHFAlIaUUpRoFU2BAWgWR0CeuDT2WY4RdX2UKGgGaAloD0MIQ8ajVIIbcUCUhpRSlGgVTSUCaBZHQJ65LWVeKKp1fZQoaAZoCWgPQwj7srRTcx5yQJSGlFKUaBVNZQFoFkdAnrrmOEM9bHV9lChoBmgJaA9DCOqzA64rCG9AlIaUUpRoFU2gAWgWR0Ceuv1Z1V5sdX2UKGgGaAloD0MIzox+NJzgb0CUhpRSlGgVTYIBaBZHQJ67G+TNdJJ1fZQoaAZoCWgPQwgtliL5ivlxQJSGlFKUaBVN+wFoFkdAnrtLZezD43V9lChoBmgJaA9DCBq/8ErSh3FAlIaUUpRoFU1OAWgWR0CevOSFoL5RdX2UKGgGaAloD0MIbATidf3qO0CUhpRSlGgVS/1oFkdAnr7Ks2eg+XV9lChoBmgJaA9DCIXrUbiebGxAlIaUUpRoFU1yAWgWR0Cevyy+pOvddX2UKGgGaAloD0MIIqrwZ3itcECUhpRSlGgVTUEBaBZHQJ6/cn7YTTR1fZQoaAZoCWgPQwjQJRx6CwdyQJSGlFKUaBVNkwFoFkdAnsNAz+FUQ3V9lChoBmgJaA9DCODb9Ge/WmZAlIaUUpRoFU3oA2gWR0CexHEYfnwHdX2UKGgGaAloD0MIaFw4EJKDcUCUhpRSlGgVTUEBaBZHQJ7EnM8ox591fZQoaAZoCWgPQwgfvkwUoetvQJSGlFKUaBVNfgNoFkdAnsT2JvYOD3V9lChoBmgJaA9DCC9tOCxNzHBAlIaUUpRoFU0oAWgWR0Cexsv4M4LkdX2UKGgGaAloD0MIK01KQXcUcUCUhpRSlGgVTY4BaBZHQJ7IPqgRK6F1fZQoaAZoCWgPQwgcfjfdsrdxQJSGlFKUaBVNXQFoFkdAnsieUpuuR3V9lChoBmgJaA9DCEz/klSmslBAlIaUUpRoFUv6aBZHQJ7JpYq5LAZ1fZQoaAZoCWgPQwjAlezYiOBvQJSGlFKUaBVNQAFoFkdAnsw7Ra5f+nV9lChoBmgJaA9DCJ6ayw0Gn3JAlIaUUpRoFU23AWgWR0CezIoa1kUcdX2UKGgGaAloD0MID+1jBb8WZ0CUhpRSlGgVTegDaBZHQJ7NWe+VTrF1fZQoaAZoCWgPQwiNJEG4QoZwQJSGlFKUaBVNOwFoFkdAnuT5Z8rqdHV9lChoBmgJaA9DCIHtYMQ+G0lAlIaUUpRoFUv/aBZHQJ7mP8P4EfV1fZQoaAZoCWgPQwjBjZQtEq1uQJSGlFKUaBVN9gFoFkdAnuZYp+c6NnV9lChoBmgJaA9DCD9UGjEzsm9AlIaUUpRoFU2DAmgWR0Ce5lsNDtw8dX2UKGgGaAloD0MII2qiz4ebckCUhpRSlGgVTW4CaBZHQJ7nQqc3EQ51fZQoaAZoCWgPQwhjfm5oSgJvQJSGlFKUaBVNsQFoFkdAnuhmIGhVVHV9lChoBmgJaA9DCJgXYB8dMG9AlIaUUpRoFU2jAWgWR0Ce6QvLHMlkdX2UKGgGaAloD0MIMBAEyNAIYkCUhpRSlGgVTegDaBZHQJ7sd+b3Gn51fZQoaAZoCWgPQwh7E0NyMh1vQJSGlFKUaBVNRgFoFkdAnu2pI1+AmXV9lChoBmgJaA9DCCrIz0YuTnBAlIaUUpRoFU3fAWgWR0Ce7oavzOHGdX2UKGgGaAloD0MICcTr+gU7b0CUhpRSlGgVTdsBaBZHQJ7v1oXbdrR1fZQoaAZoCWgPQwgIym37Xt9wQJSGlFKUaBVNlQFoFkdAnvDaBmPHUHV9lChoBmgJaA9DCBe30QDehkBAlIaUUpRoFUvsaBZHQJ7zC8lHBk91fZQoaAZoCWgPQwixbycRoYZxQJSGlFKUaBVNhQJoFkdAnvN1WbPQfXV9lChoBmgJaA9DCC2yne/nWXBAlIaUUpRoFU0+AWgWR0Ce9Fvi97F9dX2UKGgGaAloD0MIxFxStV23bUCUhpRSlGgVTXMBaBZHQJ71d/Ue+251fZQoaAZoCWgPQwhpHsAiv+puQJSGlFKUaBVNVgFoFkdAnvZBWxQizXV9lChoBmgJaA9DCDBLOzVXS3FAlIaUUpRoFU1hAWgWR0Ce+F7x/d6+dX2UKGgGaAloD0MIs7RTc3keckCUhpRSlGgVTeQDaBZHQJ75jndO6/Z1fZQoaAZoCWgPQwjL2TujbUdxQJSGlFKUaBVNVwJoFkdAnvnvCyhSL3V9lChoBmgJaA9DCIy61t7nKHFAlIaUUpRoFU1LAWgWR0Ce+mp2ll9SdX2UKGgGaAloD0MIAmcpWU4wcECUhpRSlGgVTf8BaBZHQJ78Bz2exwB1fZQoaAZoCWgPQwjAP6VKlLdOQJSGlFKUaBVL5GgWR0Ce/Ghje9BbdX2UKGgGaAloD0MIg6YlVoZscUCUhpRSlGgVTbYBaBZHQJ7/aoqCpWF1fZQoaAZoCWgPQwgRAYdQpeBHQJSGlFKUaBVL92gWR0Ce/9tu1ndwdX2UKGgGaAloD0MIv7m/elx4cECUhpRSlGgVTb0BaBZHQJ8AYX3xnWd1fZQoaAZoCWgPQwhKmj+mtQdxQJSGlFKUaBVNNgFoFkdAnwB1GG21D3V9lChoBmgJaA9DCDAOLh3zCHJAlIaUUpRoFU2RAWgWR0CfALbHIZIhdX2UKGgGaAloD0MIdk8eFiqVcECUhpRSlGgVTYMBaBZHQJ8B4e8wpON1fZQoaAZoCWgPQwidEhCTsE9wQJSGlFKUaBVNXAFoFkdAnwKLrkbPyHV9lChoBmgJaA9DCMRBQpTv/nFAlIaUUpRoFU0xAWgWR0CfA4ZLqUu+dX2UKGgGaAloD0MIrrZif1lGZkCUhpRSlGgVTegDaBZHQJ8FJxPwd811fZQoaAZoCWgPQwhdaoR+JmxwQJSGlFKUaBVNNgFoFkdAnwWRRVIZqHV9lChoBmgJaA9DCJ4MjpJXtWxAlIaUUpRoFU1lAmgWR0CfB1VARkEtdX2UKGgGaAloD0MIEas/wvAkcECUhpRSlGgVTTwBaBZHQJ8HiA5Jbt91fZQoaAZoCWgPQwjMRXwnZg1DQJSGlFKUaBVL5mgWR0CfB5qj8DSxdX2UKGgGaAloD0MIJh5QNmVDcECUhpRSlGgVTZEBaBZHQJ8InACW/rV1fZQoaAZoCWgPQwiCV8udmWRvQJSGlFKUaBVNmwFoFkdAnwicv/R3NnV9lChoBmgJaA9DCB41JsRc9W5AlIaUUpRoFU01AWgWR0CfC8HSF49pdX2UKGgGaAloD0MIEoPAyiFfbUCUhpRSlGgVTaYBaBZHQJ8MDu8brC51fZQoaAZoCWgPQwijAbwFEsJsQJSGlFKUaBVNMQFoFkdAnw1MjZ+QVHV9lChoBmgJaA9DCNGQ8SjVa3BAlIaUUpRoFU1YAWgWR0CfDWIXTEzgdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d1284901900>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d1284901990>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d1284901a20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d1284901ab0>", "_build": "<function ActorCriticPolicy._build at 0x7d1284901b40>", "forward": "<function ActorCriticPolicy.forward at 0x7d1284901bd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d1284901c60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d1284901cf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7d1284901d80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d1284901e10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d1284901ea0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d1284901f30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d12848fe440>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690334287967271486, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMCziz2nbjY++ocDvgpGWr6z3IC98CxFvQAAAAAAAAAArSUDPlKaJz/erXO8lq6UvuJUYD2yUpW9AAAAAAAAAAAaFn890Mu8P95Soj6Xf4u9Eb4pPnaehT4AAAAAAAAAAOZFgr3Vlp4/WCCavpUi075HPpm9BlUQvAAAAAAAAAAAusV/PoC7Nz/G4mi+ahmZvjLyQj2Fuc68AAAAAAAAAAAzr/K75/SlPwiNVb0ZS9O+LFMWPfIWprwAAAAAAAAAAM0mETwp9D26Hm0BOFX21jKVzy+70v4YtwAAgD8AAIA/TYQvPUjTm7r+iLizkwdoL+23xbpo3MczAACAPwAAgD/zgok9KQgSuoEnSrOujfIuB1yPu+aWwDMAAIA/AACAP3Og/T0xU78/33MNP4nosb30tD8+PfeSPgAAAAAAAAAA0ApfvpMc7D5iCB0+pXeYvjX52ryhyhU9AAAAAAAAAADNNac84RyzurJOPrZgd2Oxe4g1uhiTZDUAAIA/AACAP+h4k76o8FI/dePqPcbutL6Y6y2+g3T7PQAAAAAAAAAAMwc2vma/vD87+h2/n/N4vv3vKr4LmYa+AAAAAAAAAADNala8+E7NPPbg8r2ZnHS+i2OovdwhQj0AAAAAAAAAAM2tRr2G5RY/dgi2vQQ8Vr5YtDi9raEcPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLRv5ckdFSMAWyUTb8CjAF0lEdAlCmgUpNKy3V9lChoBkdAaRe0D2alUWgHTegDaAhHQJQ6hFocrAh1fZQoaAZHQG6Dbb+Lm6poB029AmgIR0CUOpoo/iYLdX2UKGgGR0Bugj9KmKqGaAdNUgFoCEdAlDuo5HVf/nV9lChoBkdAcSk5i3G4qmgHTXoCaAhHQJQ84/fO2Rd1fZQoaAZHQGHrmza9K29oB03oA2gIR0CUPYZEDyOJdX2UKGgGR0Bwf4bcXWOIaAdNMgFoCEdAlD6BUWEbpHV9lChoBkdAciw63iJfpmgHTW8BaAhHQJQ/C8Djin51fZQoaAZHQHD0UDU3GXJoB02bAWgIR0CUP6XKr7wbdX2UKGgGR0Bynk0Nz8xcaAdN3AFoCEdAlEO4ppeu3nV9lChoBkdAb9eeRPoFFGgHTZsBaAhHQJRDwQxvegt1fZQoaAZHQHIcgOrhispoB01YAWgIR0CUQ8YNy5qedX2UKGgGR0BwZ956dDpkaAdNdwFoCEdAlEQIiX6ZY3V9lChoBkdAQc2xhUipvWgHS91oCEdAlEZ1g2IfsHV9lChoBkdAcDcyC4Bmw2gHTVIBaAhHQJRG1yT6i0x1fZQoaAZHQHHFBvJiiItoB02cAWgIR0CUSMgIQe3hdX2UKGgGR0Bv69ic5Ke1aAdNywFoCEdAlEyYwM6RyXV9lChoBkdAbI0NsFdLQGgHTUQBaAhHQJRNalVLi/B1fZQoaAZHQHDKOTvAoG9oB01JAWgIR0CUTlEt/WlNdX2UKGgGR0BxKulLvkR0aAdNvQFoCEdAlE+lzdUKiXV9lChoBkdAcmdwl0HQhWgHTfABaAhHQJRQSA4GUwB1fZQoaAZHQG4d8hcJMQFoB00eAWgIR0CUUPk+HJtBdX2UKGgGR0A3iNcW0qpcaAdL02gIR0CUURAJ9iMHdX2UKGgGR0ByCsTCcf/4aAdNQwJoCEdAlFIpVjqfOHV9lChoBkdAcENHIp6QeWgHTUkBaAhHQJRSdegL7XR1fZQoaAZHQHAksOkLx7RoB01RAWgIR0CUUrTvy9VWdX2UKGgGR0BxRNBhQWN4aAdNDAJoCEdAlFLuAAhjfHV9lChoBkdAcHjIwudwvWgHTWcBaAhHQJRTjAP/aQF1fZQoaAZHQG8CG+9Jz1doB003AWgIR0CUU+jzqbBodX2UKGgGR0BmOfww0wajaAdN6ANoCEdAlFUr3TNMXnV9lChoBkdAcUz2HLzPKWgHTRMBaAhHQJRViseXAuZ1fZQoaAZHQES2KUmlZYBoB0vWaAhHQJRWDpGFzuF1fZQoaAZHQG3yMXJo0yhoB00sAWgIR0CUV4Gj9GZvdX2UKGgGR0ByRQJu2qkuaAdNZgFoCEdAlFiiRGMGYHV9lChoBkdAcT5HmzSkTGgHTS0BaAhHQJRZbCoCMgl1fZQoaAZHQHFY9zbN8mdoB001AWgIR0CUWolyBCladX2UKGgGR0ByucdS2phnaAdN4gFoCEdAlFqSp71Iy3V9lChoBkdAcD/g9eQdS2gHTUABaAhHQJRa060Y0l91fZQoaAZHQHH/RV2icoZoB00RAWgIR0CUWvkbPyCndX2UKGgGR0BJfb/4qPOqaAdLy2gIR0CUW63rD63zdX2UKGgGR0Bs4U65oXbeaAdNMgFoCEdAlFwzzd1uBXV9lChoBkdAZgH7rLQokWgHTegDaAhHQJRceADq4Yt1fZQoaAZHQHIoVvddmg9oB01kAWgIR0CUXQXcxj8UdX2UKGgGR0BxEv5SFXaKaAdNBgFoCEdAlF30MTewcHV9lChoBkdASJ43974SH2gHS99oCEdAlF7WtITXa3V9lChoBkdAcVqTgEU0vWgHTXwBaAhHQJRfKKDTSb91fZQoaAZHQHFwxg/keZJoB00hAWgIR0CUX01Tzd1udX2UKGgGR0BxlByhi9ZiaAdNwAFoCEdAlHFE5p8F6nV9lChoBkdAcZSXQdCE6GgHTQwBaAhHQJRxe6DoQnR1fZQoaAZHQHFsjJU5uIhoB0v3aAhHQJRyBV94NZx1fZQoaAZHQEDFeWOZLIxoB0vZaAhHQJRyi5xzaK11fZQoaAZHQHD/AwblzU9oB01LAWgIR0CUcttxuKoAdX2UKGgGR0ByBaQDFId3aAdNEwFoCEdAlHMa1kUbk3V9lChoBkdAcVE6unuRcWgHTSMBaAhHQJRzMR9PUKB1fZQoaAZHQHBAiC8OCoVoB01DAWgIR0CUdChtcfNidX2UKGgGR0Bxg9ckdFOPaAdNCQFoCEdAlHRIZAIIGHV9lChoBkdAcpZ4QjD8+GgHTRUBaAhHQJR1DB68g6l1fZQoaAZHQHCCk2YOUdJoB01GAWgIR0CUdV3vQWvbdX2UKGgGR0Bt4iTSsr/baAdNDQFoCEdAlHcnYtg8bXV9lChoBkdAcjSKxLTQV2gHTUwBaAhHQJR4kkxASnN1fZQoaAZHQG+gaTnq3VloB00jAWgIR0CUeL4YrJ8wdX2UKGgGR0BwMSu0TlDGaAdNSAFoCEdAlHocjqv/znV9lChoBkdAb9Hl7MPjGWgHTRIBaAhHQJR7dW912aF1fZQoaAZHQE1K44p+c6NoB0u8aAhHQJR7viIcinp1fZQoaAZHQHEQ46jnFHdoB00eAWgIR0CUfPWaMJhOdX2UKGgGR0BOUi4J/oaDaAdLzmgIR0CUfaOW0JF9dX2UKGgGR0BuraSPluFYaAdNHAFoCEdAlH23wsoUjHV9lChoBkdAcLWlf7aZhWgHTS4BaAhHQJR+hrULDyh1fZQoaAZHQG34oTwlSjxoB01OAWgIR0CUfwYdhiLEdX2UKGgGR0BxWwL7XQMQaAdNQQFoCEdAlH88SPEKmnV9lChoBkdAcwS9kz41xmgHS/5oCEdAlH9eBH09Q3V9lChoBkdAcWpLLZBcA2gHTUcBaAhHQJSAb2QGOdZ1fZQoaAZHQHCrtYwIt19oB00tAWgIR0CUggr7fpEAdX2UKGgGR0ByRCYRdyDJaAdNFgFoCEdAlIKDlkpZwHV9lChoBkdAY6kugYgq3GgHTegDaAhHQJSCxCkXUH91fZQoaAZHQG5mH1e0G/xoB00mAWgIR0CUguOUt7KJdX2UKGgGR0BumJAjY7JXaAdNLwJoCEdAlITC0WuX/3V9lChoBkdAcXPcHnlny2gHTT8BaAhHQJSEwWhysCF1fZQoaAZHQHFf80tRNypoB00SAWgIR0CUhVDfWMCLdX2UKGgGR0ByUf29L6DXaAdNTAFoCEdAlIYBfF72MHV9lChoBkdAcZ91eBxxUGgHTRcBaAhHQJSGLfZVXFN1fZQoaAZHQHFx6CpWFOBoB01SAWgIR0CUhl4W1twadX2UKGgGR0Bw6mrhisnzaAdNCAFoCEdAlIbsajvd/XV9lChoBkdAb5uRVZLZjGgHTRcBaAhHQJSG71WbPQh1fZQoaAZHQHDBUz41xbVoB00PAWgIR0CUh1hx5s0pdX2UKGgGR0BuBz8LronsaAdNFwFoCEdAlIexYNiH7HV9lChoBkdAcailIEr5I2gHTU8BaAhHQJSHuu7pV0d1fZQoaAZHQHLaRm9QGfRoB00fAWgIR0CUiL0Re1KHdX2UKGgGR0BP4PvBrN4aaAdL22gIR0CUiQdCE6DHdX2UKGgGR0Bu+aiO/+KkaAdNMQFoCEdAlIqaQaJhv3V9lChoBkdAcr/euFHrhWgHTVkBaAhHQJSMcuRLbpN1fZQoaAZHQG8kFQEZBLRoB01UAWgIR0CUjJGACnxbdX2UKGgGR0BEHVENOM2naAdLz2gIR0CUjLY9Pk7wdX2UKGgGR0BsxtGXokiVaAdNHwFoCEdAlIz2r0aqCHV9lChoBkdAcokZ2IO6NGgHTRkBaAhHQJSNXSjQAuJ1fZQoaAZHQGxNZP2wmmdoB00+AWgIR0CUj3r6+FlDdX2UKGgGR0AynBsyi22HaAdL22gIR0CUj6yxA0KrdX2UKGgGR0Bx7lwHZ9NOaAdNOAFoCEdAlI+2R7qptXV9lChoBkdAcB5M4LkS3GgHTUIBaAhHQJSP0qbz9TB1fZQoaAZHQHDm5wfhddFoB01yAWgIR0CUj96TW5H3dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5d2201335595a6a766837c6e893c1566d8724d90742d69ff1c9bd33b78259ca8
3
- size 147206
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c83da42e28cab16be9cc74af4d9d8f2d0265cc341f3ec519bec4550c2d2602e7
3
+ size 146737
ppo-LunarLander-v2/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.6.2
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data CHANGED
@@ -3,79 +3,80 @@
3
  ":type:": "<class 'abc.ABCMeta'>",
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
- "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5e4853aca0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5e4853ad30>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5e4853adc0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5e4853ae50>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f5e4853aee0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f5e4853af70>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5e4853f040>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f5e4853f0d0>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5e4853f160>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5e4853f1f0>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5e4853f280>",
 
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f5e48537660>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
23
- "observation_space": {
24
- ":type:": "<class 'gym.spaces.box.Box'>",
25
- ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
- "dtype": "float32",
27
- "_shape": [
28
- 8
29
- ],
30
- "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
- "high": "[inf inf inf inf inf inf inf inf]",
32
- "bounded_below": "[False False False False False False False False]",
33
- "bounded_above": "[False False False False False False False False]",
34
- "_np_random": null
35
- },
36
- "action_space": {
37
- ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
- ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
- "n": 4,
40
- "_shape": [],
41
- "dtype": "int64",
42
- "_np_random": null
43
- },
44
- "n_envs": 16,
45
  "num_timesteps": 1015808,
46
  "_total_timesteps": 1000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1672352894627033243,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
- "lr_schedule": {
54
- ":type:": "<class 'function'>",
55
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
- },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIpEer4Gxjs/Tp40PmKPbr4ajt68VVIDPQAAAAAAAAAADWhFvk0tCD/FVyM+pn1XvjpukztpLsw9AAAAAAAAAACtajM+Q1PePpm8Ir61b5K+OZAXPYPra70AAAAAAAAAAAA3zjx71qi6CzMUOHMq/DIOIW24UK8ptwAAgD8AAIA/M/N/u7jQ4D2+A5q9rgAwvuqdXbxayvO7AAAAAAAAAACadb086SK4P+F8RD+7O8Q+msWjvMl7u70AAAAAAAAAAABYJ7wp/Um8yvxsuzo/tjyOgqg9Cp+TvQAAgD8AAIA/Gn0LvXHCX7v+eoS6MrSOPJfofDwFGXW9AACAPwAAgD9N52U9NMrqPcFErb0/nNe9ZHeEOqVcDz0AAAAAAAAAALOU4T1UBII+4u+rvN2rg76oka47CsVMPQAAAAAAAAAAYFBCvjtfkLydGxC7rec2uQ8iAT5Wszk6AACAPwAAgD+NWfI9pDzWPur3wr39/4++tIedvPQIKD0AAAAAAAAAAAY5ej5piaI/Dg0YP4I7sL7MtKQ+v3/IPQAAAAAAAAAAusuIPmBQkz8oJuA+EAS2vrfttj5DMKo8AAAAAAAAAAAAdAE8cFO0P3bfTD9EXsG9WeQVvI2gOb4AAAAAAAAAADPnZTxIy6+6mhWbNBVkaS8wz804mkNhswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
  "_current_progress_remaining": -0.015808000000000044,
 
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkC3L1+UGbUCUhpRSlIwBbJRNogGMAXSUR0CecJ3wkPc0dX2UKGgGaAloD0MIkQvO4K/UcECUhpRSlGgVTfYBaBZHQJ5zhqi48U51fZQoaAZoCWgPQwghdTv7yi1LQJSGlFKUaBVL7GgWR0Cec+Eal1r7dX2UKGgGaAloD0MIDThLyfIncUCUhpRSlGgVTZsBaBZHQJ50XMkhRqJ1fZQoaAZoCWgPQwjC+j+H+WI+QJSGlFKUaBVLsWgWR0CedKeizsyBdX2UKGgGaAloD0MIqtTsgdbAakCUhpRSlGgVTcgCaBZHQJ53Rea8Yht1fZQoaAZoCWgPQwiZ9WIopxNiQJSGlFKUaBVN6ANoFkdAnni5CfHxSnV9lChoBmgJaA9DCMDqyJHO3kdAlIaUUpRoFU0FAWgWR0CeeZbFjurqdX2UKGgGaAloD0MIkC3L1yV4cECUhpRSlGgVTXsBaBZHQJ58FZU1hst1fZQoaAZoCWgPQwiXH7jKE89wQJSGlFKUaBVNdQFoFkdAnn0rlRxcV3V9lChoBmgJaA9DCHkj88ifgm5AlIaUUpRoFU3tAWgWR0CegFNvwVj7dX2UKGgGaAloD0MIb7ckB+xfb0CUhpRSlGgVTd8BaBZHQJ6Dr3IuGsV1fZQoaAZoCWgPQwhAoDNpU0NxQJSGlFKUaBVNPAJoFkdAnoQLYXfqHHV9lChoBmgJaA9DCFQ4glRKm3JAlIaUUpRoFU30AWgWR0CehMGj9GZvdX2UKGgGaAloD0MI/B2KAv3wbkCUhpRSlGgVTXYBaBZHQJ6E8/X5FgF1fZQoaAZoCWgPQwiSzyue+iNwQJSGlFKUaBVNOAJoFkdAnoe2LDQ7cXV9lChoBmgJaA9DCELuIkyROnBAlIaUUpRoFU3yAWgWR0CeibC+lCTmdX2UKGgGaAloD0MIxK9Yw0XlbECUhpRSlGgVTaUBaBZHQJ6Ku/nGKht1fZQoaAZoCWgPQwgaGHlZk9lxQJSGlFKUaBVNRwNoFkdAnoyeqzZ6EHV9lChoBmgJaA9DCPXx0Hd3ynFAlIaUUpRoFU1mAWgWR0CejQSJTER8dX2UKGgGaAloD0MIMQxYclVbcUCUhpRSlGgVTXwBaBZHQJ6O2qYJE6V1fZQoaAZoCWgPQwhlcf+R6ZVwQJSGlFKUaBVNZAJoFkdAno8XktEofHV9lChoBmgJaA9DCIxLVdrid3JAlIaUUpRoFU1MAWgWR0Cej3enQ6ZIdX2UKGgGaAloD0MIw7ewbrwWVECUhpRSlGgVTSgBaBZHQJ6Qi56MR6F1fZQoaAZoCWgPQwhp/S0BuMdwQJSGlFKUaBVNJwJoFkdAnpIU6DGtIXV9lChoBmgJaA9DCJG1hlK74HBAlIaUUpRoFU1nAWgWR0CepokxASnMdX2UKGgGaAloD0MIjnkdcYgPcECUhpRSlGgVTaUDaBZHQJ6m6bPQfIV1fZQoaAZoCWgPQwiBzM6i99xxQJSGlFKUaBVNnQFoFkdAnqgMsUZeiXV9lChoBmgJaA9DCNqrj4c+km1AlIaUUpRoFU1FA2gWR0CeqVqASWZ7dX2UKGgGaAloD0MI0v2cgnxSbkCUhpRSlGgVTcMBaBZHQJ6qUMnZ00Z1fZQoaAZoCWgPQwiz7Elgc1ZvQJSGlFKUaBVNlgFoFkdAnq2P5k9U0nV9lChoBmgJaA9DCNZwkXs63GpAlIaUUpRoFU0rA2gWR0CeroC0F8ohdX2UKGgGaAloD0MIM2q+Sr4vbUCUhpRSlGgVTcUBaBZHQJ6umQIUrTZ1fZQoaAZoCWgPQwhy/bs+c31xQJSGlFKUaBVNcgFoFkdAnrEmozeoDXV9lChoBmgJaA9DCNqM0xAVa3JAlIaUUpRoFU0PAWgWR0Cesfo9LYf5dX2UKGgGaAloD0MIij+KOnOkcECUhpRSlGgVTa8BaBZHQJ6zknAqNId1fZQoaAZoCWgPQwhAMbJkjtdvQJSGlFKUaBVNPgJoFkdAnrfIFvAGjnV9lChoBmgJaA9DCABV3LiFIHFAlIaUUpRoFU2BAWgWR0CeuDT2WY4RdX2UKGgGaAloD0MIQ8ajVIIbcUCUhpRSlGgVTSUCaBZHQJ65LWVeKKp1fZQoaAZoCWgPQwj7srRTcx5yQJSGlFKUaBVNZQFoFkdAnrrmOEM9bHV9lChoBmgJaA9DCOqzA64rCG9AlIaUUpRoFU2gAWgWR0Ceuv1Z1V5sdX2UKGgGaAloD0MIzox+NJzgb0CUhpRSlGgVTYIBaBZHQJ67G+TNdJJ1fZQoaAZoCWgPQwgtliL5ivlxQJSGlFKUaBVN+wFoFkdAnrtLZezD43V9lChoBmgJaA9DCBq/8ErSh3FAlIaUUpRoFU1OAWgWR0CevOSFoL5RdX2UKGgGaAloD0MIbATidf3qO0CUhpRSlGgVS/1oFkdAnr7Ks2eg+XV9lChoBmgJaA9DCIXrUbiebGxAlIaUUpRoFU1yAWgWR0Cevyy+pOvddX2UKGgGaAloD0MIIqrwZ3itcECUhpRSlGgVTUEBaBZHQJ6/cn7YTTR1fZQoaAZoCWgPQwjQJRx6CwdyQJSGlFKUaBVNkwFoFkdAnsNAz+FUQ3V9lChoBmgJaA9DCODb9Ge/WmZAlIaUUpRoFU3oA2gWR0CexHEYfnwHdX2UKGgGaAloD0MIaFw4EJKDcUCUhpRSlGgVTUEBaBZHQJ7EnM8ox591fZQoaAZoCWgPQwgfvkwUoetvQJSGlFKUaBVNfgNoFkdAnsT2JvYOD3V9lChoBmgJaA9DCC9tOCxNzHBAlIaUUpRoFU0oAWgWR0Cexsv4M4LkdX2UKGgGaAloD0MIK01KQXcUcUCUhpRSlGgVTY4BaBZHQJ7IPqgRK6F1fZQoaAZoCWgPQwgcfjfdsrdxQJSGlFKUaBVNXQFoFkdAnsieUpuuR3V9lChoBmgJaA9DCEz/klSmslBAlIaUUpRoFUv6aBZHQJ7JpYq5LAZ1fZQoaAZoCWgPQwjAlezYiOBvQJSGlFKUaBVNQAFoFkdAnsw7Ra5f+nV9lChoBmgJaA9DCJ6ayw0Gn3JAlIaUUpRoFU23AWgWR0CezIoa1kUcdX2UKGgGaAloD0MID+1jBb8WZ0CUhpRSlGgVTegDaBZHQJ7NWe+VTrF1fZQoaAZoCWgPQwiNJEG4QoZwQJSGlFKUaBVNOwFoFkdAnuT5Z8rqdHV9lChoBmgJaA9DCIHtYMQ+G0lAlIaUUpRoFUv/aBZHQJ7mP8P4EfV1fZQoaAZoCWgPQwjBjZQtEq1uQJSGlFKUaBVN9gFoFkdAnuZYp+c6NnV9lChoBmgJaA9DCD9UGjEzsm9AlIaUUpRoFU2DAmgWR0Ce5lsNDtw8dX2UKGgGaAloD0MII2qiz4ebckCUhpRSlGgVTW4CaBZHQJ7nQqc3EQ51fZQoaAZoCWgPQwhjfm5oSgJvQJSGlFKUaBVNsQFoFkdAnuhmIGhVVHV9lChoBmgJaA9DCJgXYB8dMG9AlIaUUpRoFU2jAWgWR0Ce6QvLHMlkdX2UKGgGaAloD0MIMBAEyNAIYkCUhpRSlGgVTegDaBZHQJ7sd+b3Gn51fZQoaAZoCWgPQwh7E0NyMh1vQJSGlFKUaBVNRgFoFkdAnu2pI1+AmXV9lChoBmgJaA9DCCrIz0YuTnBAlIaUUpRoFU3fAWgWR0Ce7oavzOHGdX2UKGgGaAloD0MICcTr+gU7b0CUhpRSlGgVTdsBaBZHQJ7v1oXbdrR1fZQoaAZoCWgPQwgIym37Xt9wQJSGlFKUaBVNlQFoFkdAnvDaBmPHUHV9lChoBmgJaA9DCBe30QDehkBAlIaUUpRoFUvsaBZHQJ7zC8lHBk91fZQoaAZoCWgPQwixbycRoYZxQJSGlFKUaBVNhQJoFkdAnvN1WbPQfXV9lChoBmgJaA9DCC2yne/nWXBAlIaUUpRoFU0+AWgWR0Ce9Fvi97F9dX2UKGgGaAloD0MIxFxStV23bUCUhpRSlGgVTXMBaBZHQJ71d/Ue+251fZQoaAZoCWgPQwhpHsAiv+puQJSGlFKUaBVNVgFoFkdAnvZBWxQizXV9lChoBmgJaA9DCDBLOzVXS3FAlIaUUpRoFU1hAWgWR0Ce+F7x/d6+dX2UKGgGaAloD0MIs7RTc3keckCUhpRSlGgVTeQDaBZHQJ75jndO6/Z1fZQoaAZoCWgPQwjL2TujbUdxQJSGlFKUaBVNVwJoFkdAnvnvCyhSL3V9lChoBmgJaA9DCIy61t7nKHFAlIaUUpRoFU1LAWgWR0Ce+mp2ll9SdX2UKGgGaAloD0MIAmcpWU4wcECUhpRSlGgVTf8BaBZHQJ78Bz2exwB1fZQoaAZoCWgPQwjAP6VKlLdOQJSGlFKUaBVL5GgWR0Ce/Ghje9BbdX2UKGgGaAloD0MIg6YlVoZscUCUhpRSlGgVTbYBaBZHQJ7/aoqCpWF1fZQoaAZoCWgPQwgRAYdQpeBHQJSGlFKUaBVL92gWR0Ce/9tu1ndwdX2UKGgGaAloD0MIv7m/elx4cECUhpRSlGgVTb0BaBZHQJ8AYX3xnWd1fZQoaAZoCWgPQwhKmj+mtQdxQJSGlFKUaBVNNgFoFkdAnwB1GG21D3V9lChoBmgJaA9DCDAOLh3zCHJAlIaUUpRoFU2RAWgWR0CfALbHIZIhdX2UKGgGaAloD0MIdk8eFiqVcECUhpRSlGgVTYMBaBZHQJ8B4e8wpON1fZQoaAZoCWgPQwidEhCTsE9wQJSGlFKUaBVNXAFoFkdAnwKLrkbPyHV9lChoBmgJaA9DCMRBQpTv/nFAlIaUUpRoFU0xAWgWR0CfA4ZLqUu+dX2UKGgGaAloD0MIrrZif1lGZkCUhpRSlGgVTegDaBZHQJ8FJxPwd811fZQoaAZoCWgPQwhdaoR+JmxwQJSGlFKUaBVNNgFoFkdAnwWRRVIZqHV9lChoBmgJaA9DCJ4MjpJXtWxAlIaUUpRoFU1lAmgWR0CfB1VARkEtdX2UKGgGaAloD0MIEas/wvAkcECUhpRSlGgVTTwBaBZHQJ8HiA5Jbt91fZQoaAZoCWgPQwjMRXwnZg1DQJSGlFKUaBVL5mgWR0CfB5qj8DSxdX2UKGgGaAloD0MIJh5QNmVDcECUhpRSlGgVTZEBaBZHQJ8InACW/rV1fZQoaAZoCWgPQwiCV8udmWRvQJSGlFKUaBVNmwFoFkdAnwicv/R3NnV9lChoBmgJaA9DCB41JsRc9W5AlIaUUpRoFU01AWgWR0CfC8HSF49pdX2UKGgGaAloD0MIEoPAyiFfbUCUhpRSlGgVTaYBaBZHQJ8MDu8brC51fZQoaAZoCWgPQwijAbwFEsJsQJSGlFKUaBVNMQFoFkdAnw1MjZ+QVHV9lChoBmgJaA9DCNGQ8SjVa3BAlIaUUpRoFU1YAWgWR0CfDWIXTEzgdWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
  "_n_updates": 248,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
@@ -86,9 +87,13 @@
86
  "n_epochs": 4,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
  },
91
  "clip_range_vf": null,
92
  "normalize_advantage": true,
93
- "target_kl": null
 
 
 
 
94
  }
 
3
  ":type:": "<class 'abc.ABCMeta'>",
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7d1284901900>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d1284901990>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d1284901a20>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d1284901ab0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7d1284901b40>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7d1284901bd0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d1284901c60>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d1284901cf0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7d1284901d80>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d1284901e10>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d1284901ea0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d1284901f30>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7d12848fe440>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  "num_timesteps": 1015808,
25
  "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1690334287967271486,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
 
 
 
 
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMCziz2nbjY++ocDvgpGWr6z3IC98CxFvQAAAAAAAAAArSUDPlKaJz/erXO8lq6UvuJUYD2yUpW9AAAAAAAAAAAaFn890Mu8P95Soj6Xf4u9Eb4pPnaehT4AAAAAAAAAAOZFgr3Vlp4/WCCavpUi075HPpm9BlUQvAAAAAAAAAAAusV/PoC7Nz/G4mi+ahmZvjLyQj2Fuc68AAAAAAAAAAAzr/K75/SlPwiNVb0ZS9O+LFMWPfIWprwAAAAAAAAAAM0mETwp9D26Hm0BOFX21jKVzy+70v4YtwAAgD8AAIA/TYQvPUjTm7r+iLizkwdoL+23xbpo3MczAACAPwAAgD/zgok9KQgSuoEnSrOujfIuB1yPu+aWwDMAAIA/AACAP3Og/T0xU78/33MNP4nosb30tD8+PfeSPgAAAAAAAAAA0ApfvpMc7D5iCB0+pXeYvjX52ryhyhU9AAAAAAAAAADNNac84RyzurJOPrZgd2Oxe4g1uhiTZDUAAIA/AACAP+h4k76o8FI/dePqPcbutL6Y6y2+g3T7PQAAAAAAAAAAMwc2vma/vD87+h2/n/N4vv3vKr4LmYa+AAAAAAAAAADNala8+E7NPPbg8r2ZnHS+i2OovdwhQj0AAAAAAAAAAM2tRr2G5RY/dgi2vQQ8Vr5YtDi9raEcPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
  "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLRv5ckdFSMAWyUTb8CjAF0lEdAlCmgUpNKy3V9lChoBkdAaRe0D2alUWgHTegDaAhHQJQ6hFocrAh1fZQoaAZHQG6Dbb+Lm6poB029AmgIR0CUOpoo/iYLdX2UKGgGR0Bugj9KmKqGaAdNUgFoCEdAlDuo5HVf/nV9lChoBkdAcSk5i3G4qmgHTXoCaAhHQJQ84/fO2Rd1fZQoaAZHQGHrmza9K29oB03oA2gIR0CUPYZEDyOJdX2UKGgGR0Bwf4bcXWOIaAdNMgFoCEdAlD6BUWEbpHV9lChoBkdAciw63iJfpmgHTW8BaAhHQJQ/C8Djin51fZQoaAZHQHD0UDU3GXJoB02bAWgIR0CUP6XKr7wbdX2UKGgGR0Bynk0Nz8xcaAdN3AFoCEdAlEO4ppeu3nV9lChoBkdAb9eeRPoFFGgHTZsBaAhHQJRDwQxvegt1fZQoaAZHQHIcgOrhispoB01YAWgIR0CUQ8YNy5qedX2UKGgGR0BwZ956dDpkaAdNdwFoCEdAlEQIiX6ZY3V9lChoBkdAQc2xhUipvWgHS91oCEdAlEZ1g2IfsHV9lChoBkdAcDcyC4Bmw2gHTVIBaAhHQJRG1yT6i0x1fZQoaAZHQHHFBvJiiItoB02cAWgIR0CUSMgIQe3hdX2UKGgGR0Bv69ic5Ke1aAdNywFoCEdAlEyYwM6RyXV9lChoBkdAbI0NsFdLQGgHTUQBaAhHQJRNalVLi/B1fZQoaAZHQHDKOTvAoG9oB01JAWgIR0CUTlEt/WlNdX2UKGgGR0BxKulLvkR0aAdNvQFoCEdAlE+lzdUKiXV9lChoBkdAcmdwl0HQhWgHTfABaAhHQJRQSA4GUwB1fZQoaAZHQG4d8hcJMQFoB00eAWgIR0CUUPk+HJtBdX2UKGgGR0A3iNcW0qpcaAdL02gIR0CUURAJ9iMHdX2UKGgGR0ByCsTCcf/4aAdNQwJoCEdAlFIpVjqfOHV9lChoBkdAcENHIp6QeWgHTUkBaAhHQJRSdegL7XR1fZQoaAZHQHAksOkLx7RoB01RAWgIR0CUUrTvy9VWdX2UKGgGR0BxRNBhQWN4aAdNDAJoCEdAlFLuAAhjfHV9lChoBkdAcHjIwudwvWgHTWcBaAhHQJRTjAP/aQF1fZQoaAZHQG8CG+9Jz1doB003AWgIR0CUU+jzqbBodX2UKGgGR0BmOfww0wajaAdN6ANoCEdAlFUr3TNMXnV9lChoBkdAcUz2HLzPKWgHTRMBaAhHQJRViseXAuZ1fZQoaAZHQES2KUmlZYBoB0vWaAhHQJRWDpGFzuF1fZQoaAZHQG3yMXJo0yhoB00sAWgIR0CUV4Gj9GZvdX2UKGgGR0ByRQJu2qkuaAdNZgFoCEdAlFiiRGMGYHV9lChoBkdAcT5HmzSkTGgHTS0BaAhHQJRZbCoCMgl1fZQoaAZHQHFY9zbN8mdoB001AWgIR0CUWolyBCladX2UKGgGR0ByucdS2phnaAdN4gFoCEdAlFqSp71Iy3V9lChoBkdAcD/g9eQdS2gHTUABaAhHQJRa060Y0l91fZQoaAZHQHH/RV2icoZoB00RAWgIR0CUWvkbPyCndX2UKGgGR0BJfb/4qPOqaAdLy2gIR0CUW63rD63zdX2UKGgGR0Bs4U65oXbeaAdNMgFoCEdAlFwzzd1uBXV9lChoBkdAZgH7rLQokWgHTegDaAhHQJRceADq4Yt1fZQoaAZHQHIoVvddmg9oB01kAWgIR0CUXQXcxj8UdX2UKGgGR0BxEv5SFXaKaAdNBgFoCEdAlF30MTewcHV9lChoBkdASJ43974SH2gHS99oCEdAlF7WtITXa3V9lChoBkdAcVqTgEU0vWgHTXwBaAhHQJRfKKDTSb91fZQoaAZHQHFwxg/keZJoB00hAWgIR0CUX01Tzd1udX2UKGgGR0BxlByhi9ZiaAdNwAFoCEdAlHFE5p8F6nV9lChoBkdAcZSXQdCE6GgHTQwBaAhHQJRxe6DoQnR1fZQoaAZHQHFsjJU5uIhoB0v3aAhHQJRyBV94NZx1fZQoaAZHQEDFeWOZLIxoB0vZaAhHQJRyi5xzaK11fZQoaAZHQHD/AwblzU9oB01LAWgIR0CUcttxuKoAdX2UKGgGR0ByBaQDFId3aAdNEwFoCEdAlHMa1kUbk3V9lChoBkdAcVE6unuRcWgHTSMBaAhHQJRzMR9PUKB1fZQoaAZHQHBAiC8OCoVoB01DAWgIR0CUdChtcfNidX2UKGgGR0Bxg9ckdFOPaAdNCQFoCEdAlHRIZAIIGHV9lChoBkdAcpZ4QjD8+GgHTRUBaAhHQJR1DB68g6l1fZQoaAZHQHCCk2YOUdJoB01GAWgIR0CUdV3vQWvbdX2UKGgGR0Bt4iTSsr/baAdNDQFoCEdAlHcnYtg8bXV9lChoBkdAcjSKxLTQV2gHTUwBaAhHQJR4kkxASnN1fZQoaAZHQG+gaTnq3VloB00jAWgIR0CUeL4YrJ8wdX2UKGgGR0BwMSu0TlDGaAdNSAFoCEdAlHocjqv/znV9lChoBkdAb9Hl7MPjGWgHTRIBaAhHQJR7dW912aF1fZQoaAZHQE1K44p+c6NoB0u8aAhHQJR7viIcinp1fZQoaAZHQHEQ46jnFHdoB00eAWgIR0CUfPWaMJhOdX2UKGgGR0BOUi4J/oaDaAdLzmgIR0CUfaOW0JF9dX2UKGgGR0BuraSPluFYaAdNHAFoCEdAlH23wsoUjHV9lChoBkdAcLWlf7aZhWgHTS4BaAhHQJR+hrULDyh1fZQoaAZHQG34oTwlSjxoB01OAWgIR0CUfwYdhiLEdX2UKGgGR0BxWwL7XQMQaAdNQQFoCEdAlH88SPEKmnV9lChoBkdAcwS9kz41xmgHS/5oCEdAlH9eBH09Q3V9lChoBkdAcWpLLZBcA2gHTUcBaAhHQJSAb2QGOdZ1fZQoaAZHQHCrtYwIt19oB00tAWgIR0CUggr7fpEAdX2UKGgGR0ByRCYRdyDJaAdNFgFoCEdAlIKDlkpZwHV9lChoBkdAY6kugYgq3GgHTegDaAhHQJSCxCkXUH91fZQoaAZHQG5mH1e0G/xoB00mAWgIR0CUguOUt7KJdX2UKGgGR0BumJAjY7JXaAdNLwJoCEdAlITC0WuX/3V9lChoBkdAcXPcHnlny2gHTT8BaAhHQJSEwWhysCF1fZQoaAZHQHFf80tRNypoB00SAWgIR0CUhVDfWMCLdX2UKGgGR0ByUf29L6DXaAdNTAFoCEdAlIYBfF72MHV9lChoBkdAcZ91eBxxUGgHTRcBaAhHQJSGLfZVXFN1fZQoaAZHQHFx6CpWFOBoB01SAWgIR0CUhl4W1twadX2UKGgGR0Bw6mrhisnzaAdNCAFoCEdAlIbsajvd/XV9lChoBkdAb5uRVZLZjGgHTRcBaAhHQJSG71WbPQh1fZQoaAZHQHDBUz41xbVoB00PAWgIR0CUh1hx5s0pdX2UKGgGR0BuBz8LronsaAdNFwFoCEdAlIexYNiH7HV9lChoBkdAcailIEr5I2gHTU8BaAhHQJSHuu7pV0d1fZQoaAZHQHLaRm9QGfRoB00fAWgIR0CUiL0Re1KHdX2UKGgGR0BP4PvBrN4aaAdL22gIR0CUiQdCE6DHdX2UKGgGR0Bu+aiO/+KkaAdNMQFoCEdAlIqaQaJhv3V9lChoBkdAcr/euFHrhWgHTVkBaAhHQJSMcuRLbpN1fZQoaAZHQG8kFQEZBLRoB01UAWgIR0CUjJGACnxbdX2UKGgGR0BEHVENOM2naAdLz2gIR0CUjLY9Pk7wdX2UKGgGR0BsxtGXokiVaAdNHwFoCEdAlIz2r0aqCHV9lChoBkdAcokZ2IO6NGgHTRkBaAhHQJSNXSjQAuJ1fZQoaAZHQGxNZP2wmmdoB00+AWgIR0CUj3r6+FlDdX2UKGgGR0AynBsyi22HaAdL22gIR0CUj6yxA0KrdX2UKGgGR0Bx7lwHZ9NOaAdNOAFoCEdAlI+2R7qptXV9lChoBkdAcB5M4LkS3GgHTUIBaAhHQJSP0qbz9TB1fZQoaAZHQHDm5wfhddFoB01yAWgIR0CUj96TW5H3dWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
  "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
  "n_steps": 1024,
81
  "gamma": 0.999,
82
  "gae_lambda": 0.98,
 
87
  "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
  },
92
  "clip_range_vf": null,
93
  "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
  }
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b526e7d58b336edf2e53062ec49d5804ab5684fe351d41edf954e8342e4a14d4
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:484bb5d0f42812dd273a00e67a65e3e1db80862f34f88b9170467fcb8a49f232
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ebddb50026cd2a83990c500b569a62a9e619eef97a464f6ff2f870403fa6c5c7
3
- size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed8af0b13d1ef6923ba521546c9ad6dd32615e6c713d18880c0e96e06c11ba0e
3
+ size 43329
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,7 +1,9 @@
1
- OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
- Python: 3.8.16
3
- Stable-Baselines3: 1.6.2
4
- PyTorch: 1.13.0+cu116
5
- GPU Enabled: True
6
- Numpy: 1.21.6
7
- Gym: 0.21.0
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.6
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 262.6025911089099, "std_reward": 18.610382079010936, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-29T23:12:16.787424"}
 
1
+ {"mean_reward": 247.79159340000007, "std_reward": 19.77058132100489, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-26T02:03:07.455134"}