File size: 8,306 Bytes
1403e54
 
 
 
fbecdcb
1403e54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbecdcb
1403e54
 
fbecdcb
1403e54
 
81ecc51
1403e54
b6ba5bb
1403e54
 
c263486
 
1403e54
 
 
 
0f8a4db
 
5881c3b
0f8a4db
 
5881c3b
0f8a4db
5881c3b
204552c
0f8a4db
5881c3b
0f8a4db
 
 
1403e54
 
 
 
 
 
 
 
 
fbecdcb
1403e54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbecdcb
 
 
 
1403e54
fbecdcb
 
 
 
 
1403e54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbecdcb
 
 
 
 
1403e54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ded0380
1403e54
ded0380
 
1403e54
ded0380
 
 
1403e54
 
 
 
 
 
 
 
 
 
 
 
fbecdcb
1403e54
 
 
fbecdcb
1403e54
 
 
44c9ee2
1403e54
 
ee165c0
 
 
 
 
c6eafff
 
ee165c0
eb3425d
ee165c0
 
af46c2d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
---
language: ar
datasets:
- common_voice
- arabic_speech_corpus
metrics:
- wer
- cer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Arabic by Jonatas Grosman
  results:
  - task: 
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice ar
      type: common_voice
      args: ar
    metrics:
       - name: Test WER
         type: wer
         value: 39.59
       - name: Test CER
         type: cer
         value: 18.18
---

# Fine-tuned XLSR-53 large model for speech recognition in Arabic

Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Arabic using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice) and [Arabic Speech Corpus](https://huggingface.co/datasets/arabic_speech_corpus).
When using this model, make sure that your speech input is sampled at 16kHz.

This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :)

The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint

## Usage

The model can be used directly (without a language model) as follows...

Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library:

```python
from huggingsound import SpeechRecognitionModel

model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-arabic")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]

transcriptions = model.transcribe(audio_paths)
```

Writing your own inference script:

```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "ar"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-arabic"
SAMPLES = 10

test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = batch["sentence"].upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)

for i, predicted_sentence in enumerate(predicted_sentences):
    print("-" * 100)
    print("Reference:", test_dataset[i]["sentence"])
    print("Prediction:", predicted_sentence)
```

| Reference  | Prediction |
| ------------- | ------------- |
| ุฃู„ุฏูŠูƒ ู‚ู„ู… ุŸ | ุฃู„ุฏูŠูƒ ู‚ู„ู… |
| ู„ูŠุณุช ู‡ู†ุงูƒ ู…ุณุงูุฉ ุนู„ู‰ ู‡ุฐู‡ ุงู„ุฃุฑุถ ุฃุจุนุฏ ู…ู† ูŠูˆู… ุฃู…ุณ. | ู„ูŠุณุช ู†ุงู„ูƒ ู…ุณุงูุฉ ุนู„ู‰ ู‡ุฐู‡ ุงู„ุฃุฑุถ ุฃุจุนุฏ ู…ู† ูŠูˆู… ุงู„ุฃู…ุณ  ู… |
| ุฅู†ูƒ ุชูƒุจุฑ ุงู„ู…ุดูƒู„ุฉ. | ุฅู†ูƒ ุชูƒุจุฑ ุงู„ู…ุดูƒู„ุฉ |
| ูŠุฑุบุจ ุฃู† ูŠู„ุชู‚ูŠ ุจูƒ. | ูŠุฑุบุจ ุฃู† ูŠู„ุชู‚ูŠ ุจูƒ |
| ุฅู†ู‡ู… ู„ุง ูŠุนุฑููˆู† ู„ู…ุงุฐุง ุญุชู‰. | ุฅู†ู‡ู… ู„ุง ูŠุนุฑููˆู† ู„ู…ุงุฐุง ุญุชู‰ |
| ุณูŠุณุนุฏู†ูŠ ู…ุณุงุนุฏุชูƒ ุฃูŠ ูˆู‚ุช ุชุญุจ. | ุณูŠุณุฆุฏู†ูŠู…ุณุงุนุฏุชูƒ ุฃูŠ ูˆู‚ุฏ ุชุญุจ |
| ุฃูŽุญูŽุจู‘ู ู†ุธุฑูŠู‘ุฉ ุนู„ู…ูŠุฉ ุฅู„ูŠู‘ ู‡ูŠ ุฃู† ุญู„ู‚ุงุช ุฒุญู„ ู…ูƒูˆู†ุฉ ุจุงู„ูƒุงู…ู„ ู…ู† ุงู„ุฃู…ุชุนุฉ ุงู„ู…ูู‚ูˆุฏุฉ. | ุฃุญุจ ู†ุธุฑูŠุฉ ุนู„ู…ูŠุฉ ุฅู„ูŠ  ู‡ูŠ ุฃู† ุญู„ ู‚ุชุฒุญ ุงู„ู…ูƒูˆูŠู†ุง ุจุงู„ูƒุงู…ู„ ู…ู† ุงู„ุฃู…ุช ุนู† ุงู„ู…ูู‚ูˆุฏุฉ |
| ุณุฃุดุชุฑูŠ ู„ู‡ ู‚ู„ู…ุงู‹. | ุณุฃุดุชุฑูŠ ู„ู‡ ู‚ู„ู…ุง |
| ุฃูŠู† ุงู„ู…ุดูƒู„ุฉ ุŸ | ุฃูŠู† ุงู„ู…ุดูƒู„ |
| ูˆูŽู„ูู„ู‘ูŽู‡ู ูŠูŽุณู’ุฌูุฏู ู…ูŽุง ูููŠ ุงู„ุณู‘ูŽู…ูŽุงูˆูŽุงุชู ูˆูŽู…ูŽุง ูููŠ ุงู„ู’ุฃูŽุฑู’ุถู ู…ูู†ู’ ุฏูŽุงุจู‘ูŽุฉู ูˆูŽุงู„ู’ู…ูŽู„ูŽุงุฆููƒูŽุฉู ูˆูŽู‡ูู…ู’ ู„ูŽุง ูŠูŽุณู’ุชูŽูƒู’ุจูุฑููˆู†ูŽ | ูˆู„ู„ู‡ ูŠุณุฌุฏ ู…ุง ููŠ ุงู„ุณู…ุงูˆุงุช ูˆู…ุง ููŠ ุงู„ุฃุฑุถ ู…ู† ุฏุงุจุฉ ูˆุงู„ู…ู„ุงุฆูƒุฉ ูˆู‡ู… ู„ุง ูŠุณุชูƒุจุฑูˆู† |

## Evaluation

The model can be evaluated as follows on the Arabic test data of Common Voice.

```python
import torch
import re
import librosa
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "ar"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-arabic"
DEVICE = "cuda"

CHARS_TO_IGNORE = [",", "?", "ยฟ", ".", "!", "ยก", ";", "๏ผ›", ":", '""', "%", '"', "๏ฟฝ", "สฟ", "ยท", "แƒป", "~", "ีž",
                  "ุŸ", "ุŒ", "เฅค", "เฅฅ", "ยซ", "ยป", "โ€ž", "โ€œ", "โ€", "ใ€Œ", "ใ€", "โ€˜", "โ€™", "ใ€Š", "ใ€‹", "(", ")", "[", "]",
                  "{", "}", "=", "`", "_", "+", "<", ">", "โ€ฆ", "โ€“", "ยฐ", "ยด", "สพ", "โ€น", "โ€บ", "ยฉ", "ยฎ", "โ€”", "โ†’", "ใ€‚",
                  "ใ€", "๏น‚", "๏น", "โ€ง", "๏ฝž", "๏น", "๏ผŒ", "๏ฝ›", "๏ฝ", "๏ผˆ", "๏ผ‰", "๏ผป", "๏ผฝ", "ใ€", "ใ€‘", "โ€ฅ", "ใ€ฝ",
                  "ใ€Ž", "ใ€", "ใ€", "ใ€Ÿ", "โŸจ", "โŸฉ", "ใ€œ", "๏ผš", "๏ผ", "๏ผŸ", "โ™ช", "ุ›", "/", "\\", "ยบ", "โˆ’", "^", "'", "สป", "ห†"]

test_dataset = load_dataset("common_voice", LANG_ID, split="test")

wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py
cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py

chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
model.to(DEVICE)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

predictions = [x.upper() for x in result["pred_strings"]]
references = [x.upper() for x in result["sentence"]]

print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
```

**Test Result**:

In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-05-14). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used.

| Model | WER | CER |
| ------------- | ------------- | ------------- |
| jonatasgrosman/wav2vec2-large-xlsr-53-arabic | **39.59%** | **18.18%** |
| bakrianoo/sinai-voice-ar-stt | 45.30% | 21.84% |
| othrif/wav2vec2-large-xlsr-arabic | 45.93% | 20.51% |
| kmfoda/wav2vec2-large-xlsr-arabic | 54.14% | 26.07% |
| mohammed/wav2vec2-large-xlsr-arabic | 56.11% | 26.79% |
| anas/wav2vec2-large-xlsr-arabic | 62.02% | 27.09% |
| elgeish/wav2vec2-large-xlsr-53-arabic | 100.00% | 100.56% |

## Citation
If you want to cite this model you can use this:

```bibtex
@misc{grosman2021xlsr53-large-arabic,
  title={Fine-tuned {XLSR}-53 large model for speech recognition in {A}rabic},
  author={Grosman, Jonatas},
  howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-arabic}},
  year={2021}
}
```