File size: 5,304 Bytes
8433ab8
 
e026db5
8433ab8
 
e026db5
8433ab8
 
f1f3121
8433ab8
 
 
9d11536
 
 
 
8433ab8
 
 
 
 
f4fbf4a
 
8433ab8
 
 
 
 
 
f4fbf4a
 
 
 
 
 
 
 
 
 
 
 
 
e026db5
 
 
 
 
 
 
f4fbf4a
 
 
 
 
 
 
 
 
 
 
 
8433ab8
 
e24dd8e
8433ab8
39bf6f2
8433ab8
 
8588802
 
8433ab8
 
 
 
f37d16d
 
e449ab9
f37d16d
 
e449ab9
f37d16d
e449ab9
f37d16d
e449ab9
 
f37d16d
 
 
8433ab8
 
 
 
 
 
 
 
 
1ea8798
8433ab8
512c442
8433ab8
 
 
 
 
 
 
470f466
 
 
 
8433ab8
 
512c442
8433ab8
 
470f466
8433ab8
 
512c442
8433ab8
512c442
 
 
 
8433ab8
 
512c442
 
bafce34
 
512c442
bafce34
e01ed06
bafce34
1ea8798
 
bafce34
1ea8798
512c442
8433ab8
 
e026db5
8433ab8
e026db5
 
8433ab8
 
e026db5
4c98659
e026db5
 
 
67f9783
 
 
 
 
e24dd8e
 
67f9783
 
 
 
634ac65
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
---
language: pt
license: apache-2.0
datasets:
- common_voice
- mozilla-foundation/common_voice_6_0
metrics:
- wer
- cer
tags:
- audio
- automatic-speech-recognition
- hf-asr-leaderboard
- mozilla-foundation/common_voice_6_0
- pt
- robust-speech-event
- speech
- xlsr-fine-tuning-week
model-index:
- name: XLSR Wav2Vec2 Portuguese by Jonatas Grosman
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice pt
      type: common_voice
      args: pt
    metrics:
    - name: Test WER
      type: wer
      value: 11.31
    - name: Test CER
      type: cer
      value: 3.74
    - name: Test WER (+LM)
      type: wer
      value: 9.01
    - name: Test CER (+LM)
      type: cer
      value: 3.21
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: pt
    metrics:
    - name: Dev WER
      type: wer
      value: 42.1
    - name: Dev CER
      type: cer
      value: 17.93
    - name: Dev WER (+LM)
      type: wer
      value: 36.92
    - name: Dev CER (+LM)
      type: cer
      value: 16.88
---

# Fine-tuned XLSR-53 large model for speech recognition in Portuguese

Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Portuguese using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.

This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :)

The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint

## Usage

The model can be used directly (without a language model) as follows...

Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library:

```python
from huggingsound import SpeechRecognitionModel

model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-portuguese")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]

transcriptions = model.transcribe(audio_paths)
```

Writing your own inference script:

```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "pt"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-portuguese"
SAMPLES = 10

test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = batch["sentence"].upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)

for i, predicted_sentence in enumerate(predicted_sentences):
    print("-" * 100)
    print("Reference:", test_dataset[i]["sentence"])
    print("Prediction:", predicted_sentence)
```

| Reference  | Prediction |
| ------------- | ------------- |
| NEM O RADAR NEM OS OUTROS INSTRUMENTOS DETECTARAM O BOMBARDEIRO STEALTH. | NEMHUM VADAN OS  OLTWES INSTRUMENTOS DE TTÉÃN UM BOMBERDEIRO OSTER |
| PEDIR DINHEIRO EMPRESTADO ÀS PESSOAS DA ALDEIA | E DIR ENGINHEIRO EMPRESTAR AS PESSOAS DA ALDEIA |
| OITO | OITO |
| TRANCÁ-LOS | TRANCAUVOS |
| REALIZAR UMA INVESTIGAÇÃO PARA RESOLVER O PROBLEMA | REALIZAR UMA INVESTIGAÇÃO PARA RESOLVER O PROBLEMA |
| O YOUTUBE AINDA É A MELHOR PLATAFORMA DE VÍDEOS. | YOUTUBE AINDA É A MELHOR PLATAFOMA DE VÍDEOS |
| MENINA E MENINO BEIJANDO NAS SOMBRAS | MENINA E MENINO BEIJANDO NAS SOMBRAS |
| EU SOU O SENHOR | EU SOU O SENHOR |
| DUAS MULHERES QUE SENTAM-SE PARA BAIXO LENDO JORNAIS. | DUAS MIERES QUE SENTAM-SE PARA BAICLANE JODNÓI |
| EU ORIGINALMENTE ESPERAVA | EU ORIGINALMENTE ESPERAVA |

## Evaluation

1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test`

```bash
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-portuguese --dataset mozilla-foundation/common_voice_6_0 --config pt --split test
```

2. To evaluate on `speech-recognition-community-v2/dev_data`

```bash
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-portuguese --dataset speech-recognition-community-v2/dev_data --config pt --split validation --chunk_length_s 5.0 --stride_length_s 1.0
```

## Citation
If you want to cite this model you can use this:

```bibtex
@misc{grosman2021xlsr53-large-portuguese,
  title={Fine-tuned {XLSR}-53 large model for speech recognition in {P}ortuguese},
  author={Grosman, Jonatas},
  howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-portuguese}},
  year={2021}
}
```