File size: 5,304 Bytes
8433ab8 e026db5 8433ab8 e026db5 8433ab8 f1f3121 8433ab8 9d11536 8433ab8 f4fbf4a 8433ab8 f4fbf4a e026db5 f4fbf4a 8433ab8 e24dd8e 8433ab8 39bf6f2 8433ab8 8588802 8433ab8 f37d16d e449ab9 f37d16d e449ab9 f37d16d e449ab9 f37d16d e449ab9 f37d16d 8433ab8 1ea8798 8433ab8 512c442 8433ab8 470f466 8433ab8 512c442 8433ab8 470f466 8433ab8 512c442 8433ab8 512c442 8433ab8 512c442 bafce34 512c442 bafce34 e01ed06 bafce34 1ea8798 bafce34 1ea8798 512c442 8433ab8 e026db5 8433ab8 e026db5 8433ab8 e026db5 4c98659 e026db5 67f9783 e24dd8e 67f9783 634ac65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
---
language: pt
license: apache-2.0
datasets:
- common_voice
- mozilla-foundation/common_voice_6_0
metrics:
- wer
- cer
tags:
- audio
- automatic-speech-recognition
- hf-asr-leaderboard
- mozilla-foundation/common_voice_6_0
- pt
- robust-speech-event
- speech
- xlsr-fine-tuning-week
model-index:
- name: XLSR Wav2Vec2 Portuguese by Jonatas Grosman
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice pt
type: common_voice
args: pt
metrics:
- name: Test WER
type: wer
value: 11.31
- name: Test CER
type: cer
value: 3.74
- name: Test WER (+LM)
type: wer
value: 9.01
- name: Test CER (+LM)
type: cer
value: 3.21
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: pt
metrics:
- name: Dev WER
type: wer
value: 42.1
- name: Dev CER
type: cer
value: 17.93
- name: Dev WER (+LM)
type: wer
value: 36.92
- name: Dev CER (+LM)
type: cer
value: 16.88
---
# Fine-tuned XLSR-53 large model for speech recognition in Portuguese
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Portuguese using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :)
The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint
## Usage
The model can be used directly (without a language model) as follows...
Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library:
```python
from huggingsound import SpeechRecognitionModel
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-portuguese")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = model.transcribe(audio_paths)
```
Writing your own inference script:
```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "pt"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-portuguese"
SAMPLES = 10
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
for i, predicted_sentence in enumerate(predicted_sentences):
print("-" * 100)
print("Reference:", test_dataset[i]["sentence"])
print("Prediction:", predicted_sentence)
```
| Reference | Prediction |
| ------------- | ------------- |
| NEM O RADAR NEM OS OUTROS INSTRUMENTOS DETECTARAM O BOMBARDEIRO STEALTH. | NEMHUM VADAN OS OLTWES INSTRUMENTOS DE TTÉÃN UM BOMBERDEIRO OSTER |
| PEDIR DINHEIRO EMPRESTADO ÀS PESSOAS DA ALDEIA | E DIR ENGINHEIRO EMPRESTAR AS PESSOAS DA ALDEIA |
| OITO | OITO |
| TRANCÁ-LOS | TRANCAUVOS |
| REALIZAR UMA INVESTIGAÇÃO PARA RESOLVER O PROBLEMA | REALIZAR UMA INVESTIGAÇÃO PARA RESOLVER O PROBLEMA |
| O YOUTUBE AINDA É A MELHOR PLATAFORMA DE VÍDEOS. | YOUTUBE AINDA É A MELHOR PLATAFOMA DE VÍDEOS |
| MENINA E MENINO BEIJANDO NAS SOMBRAS | MENINA E MENINO BEIJANDO NAS SOMBRAS |
| EU SOU O SENHOR | EU SOU O SENHOR |
| DUAS MULHERES QUE SENTAM-SE PARA BAIXO LENDO JORNAIS. | DUAS MIERES QUE SENTAM-SE PARA BAICLANE JODNÓI |
| EU ORIGINALMENTE ESPERAVA | EU ORIGINALMENTE ESPERAVA |
## Evaluation
1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test`
```bash
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-portuguese --dataset mozilla-foundation/common_voice_6_0 --config pt --split test
```
2. To evaluate on `speech-recognition-community-v2/dev_data`
```bash
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-portuguese --dataset speech-recognition-community-v2/dev_data --config pt --split validation --chunk_length_s 5.0 --stride_length_s 1.0
```
## Citation
If you want to cite this model you can use this:
```bibtex
@misc{grosman2021xlsr53-large-portuguese,
title={Fine-tuned {XLSR}-53 large model for speech recognition in {P}ortuguese},
author={Grosman, Jonatas},
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-portuguese}},
year={2021}
}
``` |