File size: 10,313 Bytes
2377071
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# coding=utf-8
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Qwen2 model configuration"""

from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_rope_utils import rope_config_validation
from transformers.utils import logging


logger = logging.get_logger(__name__)


class Qwen2Config(PretrainedConfig):
    r"""

    This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a

    Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration

    with the defaults will yield a similar configuration to that of

    Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).



    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the

    documentation from [`PretrainedConfig`] for more information.





    Args:

        vocab_size (`int`, *optional*, defaults to 151936):

            Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the

            `inputs_ids` passed when calling [`Qwen2Model`]

        hidden_size (`int`, *optional*, defaults to 4096):

            Dimension of the hidden representations.

        intermediate_size (`int`, *optional*, defaults to 22016):

            Dimension of the MLP representations.

        num_hidden_layers (`int`, *optional*, defaults to 32):

            Number of hidden layers in the Transformer encoder.

        num_attention_heads (`int`, *optional*, defaults to 32):

            Number of attention heads for each attention layer in the Transformer encoder.

        num_key_value_heads (`int`, *optional*, defaults to 32):

            This is the number of key_value heads that should be used to implement Grouped Query Attention. If

            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if

            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When

            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed

            by meanpooling all the original heads within that group. For more details checkout [this

            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.

        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):

            The non-linear activation function (function or string) in the decoder.

        max_position_embeddings (`int`, *optional*, defaults to 32768):

            The maximum sequence length that this model might ever be used with.

        initializer_range (`float`, *optional*, defaults to 0.02):

            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

        rms_norm_eps (`float`, *optional*, defaults to 1e-06):

            The epsilon used by the rms normalization layers.

        use_cache (`bool`, *optional*, defaults to `True`):

            Whether or not the model should return the last key/values attentions (not used by all models). Only

            relevant if `config.is_decoder=True`.

        tie_word_embeddings (`bool`, *optional*, defaults to `False`):

            Whether the model's input and output word embeddings should be tied.

        rope_theta (`float`, *optional*, defaults to 10000.0):

            The base period of the RoPE embeddings.

        rope_scaling (`Dict`, *optional*):

            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type

            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value

            accordingly.

            Expected contents:

                `rope_type` (`str`):

                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',

                    'llama3'], with 'default' being the original RoPE implementation.

                `factor` (`float`, *optional*):

                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In

                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *

                    original maximum pre-trained length.

                `original_max_position_embeddings` (`int`, *optional*):

                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during

                    pretraining.

                `attention_factor` (`float`, *optional*):

                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention

                    computation. If unspecified, it defaults to value recommended by the implementation, using the

                    `factor` field to infer the suggested value.

                `beta_fast` (`float`, *optional*):

                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear

                    ramp function. If unspecified, it defaults to 32.

                `beta_slow` (`float`, *optional*):

                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear

                    ramp function. If unspecified, it defaults to 1.

                `short_factor` (`List[float]`, *optional*):

                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<

                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden

                    size divided by the number of attention heads divided by 2

                `long_factor` (`List[float]`, *optional*):

                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<

                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden

                    size divided by the number of attention heads divided by 2

                `low_freq_factor` (`float`, *optional*):

                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE

                `high_freq_factor` (`float`, *optional*):

                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE

        use_sliding_window (`bool`, *optional*, defaults to `False`):

            Whether to use sliding window attention.

        sliding_window (`int`, *optional*, defaults to 4096):

            Sliding window attention (SWA) window size. If not specified, will default to `4096`.

        max_window_layers (`int`, *optional*, defaults to 28):

            The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.

        attention_dropout (`float`, *optional*, defaults to 0.0):

            The dropout ratio for the attention probabilities.



    ```python

    >>> from transformers import Qwen2Model, Qwen2Config



    >>> # Initializing a Qwen2 style configuration

    >>> configuration = Qwen2Config()



    >>> # Initializing a model from the Qwen2-7B style configuration

    >>> model = Qwen2Model(configuration)



    >>> # Accessing the model configuration

    >>> configuration = model.config

    ```"""

    model_type = "qwen2"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(

        self,

        vocab_size=151936,

        hidden_size=4096,

        intermediate_size=22016,

        num_hidden_layers=32,

        num_attention_heads=32,

        num_key_value_heads=32,

        hidden_act="silu",

        max_position_embeddings=32768,

        initializer_range=0.02,

        rms_norm_eps=1e-6,

        use_cache=True,

        tie_word_embeddings=False,

        rope_theta=10000.0,

        rope_scaling=None,

        use_sliding_window=False,

        sliding_window=4096,

        max_window_layers=28,

        attention_dropout=0.0,

        **kwargs,

    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.use_sliding_window = use_sliding_window
        self.sliding_window = sliding_window if use_sliding_window else None
        self.max_window_layers = max_window_layers

        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling
        self.attention_dropout = attention_dropout
        # Validate the correctness of rotary position embeddings parameters
        # BC: if there is a 'type' field, move it to 'rope_type'.
        if self.rope_scaling is not None and "type" in self.rope_scaling:
            self.rope_scaling["rope_type"] = self.rope_scaling["type"]
        rope_config_validation(self)

        super().__init__(
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )