--- tags: - generated_from_trainer datasets: - ncbi_disease metrics: - precision - recall - f1 - accuracy base_model: dmis-lab/biobert-base-cased-v1.2 model-index: - name: biobert-base-cased-v1.2_ncbi_disease-softmax-labelall-ner results: - task: type: token-classification name: Token Classification dataset: name: ncbi_disease type: ncbi_disease args: ncbi_disease metrics: - type: precision value: 0.8288508557457213 name: Precision - type: recall value: 0.8614993646759848 name: Recall - type: f1 value: 0.8448598130841122 name: F1 - type: accuracy value: 0.9861487755016897 name: Accuracy --- # biobert-base-cased-v1.2_ncbi_disease-softmax-labelall-ner This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the ncbi_disease dataset. It achieves the following results on the evaluation set: - Loss: 0.0629 - Precision: 0.8289 - Recall: 0.8615 - F1: 0.8449 - Accuracy: 0.9861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0554 | 1.0 | 1359 | 0.0659 | 0.7814 | 0.8132 | 0.7970 | 0.9825 | | 0.0297 | 2.0 | 2718 | 0.0445 | 0.8284 | 0.8895 | 0.8578 | 0.9876 | | 0.0075 | 3.0 | 4077 | 0.0629 | 0.8289 | 0.8615 | 0.8449 | 0.9861 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1