josedossantos commited on
Commit
b25cb6b
1 Parent(s): 2423b4e

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,375 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - dataset_size:10K<n<100K
9
+ - loss:ContrastiveLoss
10
+ base_model: neuralmind/bert-large-portuguese-cased
11
+ widget:
12
+ - source_sentence: Alteração, inclusão, evento esportivo, Vale-Cultura.
13
+ sentences:
14
+ - Criação, incentivo, atividade cultural, desconto, categoria profissional, professor,
15
+ escola pública, parceria, cinema, teatro, editora, livraria.
16
+ - 'Alteração, Lei das Eleições (1997), nome, registro de candidatura, candidato
17
+ a cargo eletivo, justiça eleitoral. '
18
+ - Alteração, Lei do Marco Civil da Internet, proibição, provedor de acesso, Internet,
19
+ cobrança, franquia, banda larga fixa.
20
+ - source_sentence: Inclusão, Cerrado, Caatinga, Patrimônio da União.
21
+ sentences:
22
+ - Alteração, Constituição Federal, Meio Ambiente, inclusão, ecossistema, mar, caatinga,
23
+ campo, Região Sul, Patrimônio da União.
24
+ - Título de Capital Nacional, Capital Nacional do Alimento, Marília (SP), São Paulo
25
+ (Estado), Título de Topônimo.
26
+ - 'Proibição, cobrança, tarifa, conta bancária, inatividade, descumprimento, penalidade
27
+ administrativa. '
28
+ - source_sentence: Criação, Semana Nacional dos Contadores de História.
29
+ sentences:
30
+ - Criação, Dia Nacional da Filantropia, comemoração, agosto.
31
+ - 'Alteração, Lei Antifumo, teor alcóolico, proibição, propaganda comercial, bebida
32
+ alcoólica, comunicação de massa. '
33
+ - Alteração, Lei da TV Paga, concessão, prestação de serviços, televisão por assinatura,
34
+ possibilidade, adaptação, radiodifusão de sons e imagens.
35
+ - source_sentence: Alteração, fixação, jornada de trabalho, psicólogo.
36
+ sentences:
37
+ - Alteração, regulamentação, jornada de trabalho, psicólogo.
38
+ - Regulamentação profissional, garçom, exercício profissional, documentação, piso
39
+ salarial, jornada de trabalho.
40
+ - Alteração, lei federal, piso salarial, profissão, enfermeiro, técnico de enfermagem,
41
+ auxiliar de enfermagem, obstetriz.
42
+ - source_sentence: Voto facultativo, eleitor, maior de dezesseis anos.
43
+ sentences:
44
+ - Constituição Federal (1988), facultatividade, direito de voto, eleições, voto
45
+ facultativo.
46
+ - Regulamentação profissional, garçom, exercício profissional, documentação, piso
47
+ salarial, jornada de trabalho.
48
+ - "Alteração, Lei dos Direitos Autorais, suspensão, renovação, serviço, radiodifusão,\
49
+ \ rádio, inadimplência, direito autoral.\r\n"
50
+ pipeline_tag: sentence-similarity
51
+ ---
52
+
53
+ # SentenceTransformer based on neuralmind/bert-large-portuguese-cased
54
+
55
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
56
+
57
+ ## Model Details
58
+
59
+ ### Model Description
60
+ - **Model Type:** Sentence Transformer
61
+ - **Base model:** [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) <!-- at revision aa302f6ea73b759f7df9cad58bd272127b67ec28 -->
62
+ - **Maximum Sequence Length:** 512 tokens
63
+ - **Output Dimensionality:** 1024 tokens
64
+ - **Similarity Function:** Cosine Similarity
65
+ <!-- - **Training Dataset:** Unknown -->
66
+ <!-- - **Language:** Unknown -->
67
+ <!-- - **License:** Unknown -->
68
+
69
+ ### Model Sources
70
+
71
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
72
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
73
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
74
+
75
+ ### Full Model Architecture
76
+
77
+ ```
78
+ SentenceTransformer(
79
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
80
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
81
+ )
82
+ ```
83
+
84
+ ## Usage
85
+
86
+ ### Direct Usage (Sentence Transformers)
87
+
88
+ First install the Sentence Transformers library:
89
+
90
+ ```bash
91
+ pip install -U sentence-transformers
92
+ ```
93
+
94
+ Then you can load this model and run inference.
95
+ ```python
96
+ from sentence_transformers import SentenceTransformer
97
+
98
+ # Download from the 🤗 Hub
99
+ model = SentenceTransformer("josedossantos/urf-txtIndexacao-bertimbau")
100
+ # Run inference
101
+ sentences = [
102
+ 'Voto facultativo, eleitor, maior de dezesseis anos.',
103
+ 'Constituição Federal (1988), facultatividade, direito de voto, eleições, voto facultativo.',
104
+ 'Regulamentação profissional, garçom, exercício profissional, documentação, piso salarial, jornada de trabalho.',
105
+ ]
106
+ embeddings = model.encode(sentences)
107
+ print(embeddings.shape)
108
+ # [3, 1024]
109
+
110
+ # Get the similarity scores for the embeddings
111
+ similarities = model.similarity(embeddings, embeddings)
112
+ print(similarities.shape)
113
+ # [3, 3]
114
+ ```
115
+
116
+ <!--
117
+ ### Direct Usage (Transformers)
118
+
119
+ <details><summary>Click to see the direct usage in Transformers</summary>
120
+
121
+ </details>
122
+ -->
123
+
124
+ <!--
125
+ ### Downstream Usage (Sentence Transformers)
126
+
127
+ You can finetune this model on your own dataset.
128
+
129
+ <details><summary>Click to expand</summary>
130
+
131
+ </details>
132
+ -->
133
+
134
+ <!--
135
+ ### Out-of-Scope Use
136
+
137
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
138
+ -->
139
+
140
+ <!--
141
+ ## Bias, Risks and Limitations
142
+
143
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
144
+ -->
145
+
146
+ <!--
147
+ ### Recommendations
148
+
149
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
150
+ -->
151
+
152
+ ## Training Details
153
+
154
+ ### Training Dataset
155
+
156
+ #### Unnamed Dataset
157
+
158
+
159
+ * Size: 10,962 training samples
160
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
161
+ * Approximate statistics based on the first 1000 samples:
162
+ | | sentence_0 | sentence_1 | label |
163
+ |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------|
164
+ | type | string | string | int |
165
+ | details | <ul><li>min: 9 tokens</li><li>mean: 52.32 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 52.76 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>0: ~49.90%</li><li>1: ~50.10%</li></ul> |
166
+ * Samples:
167
+ | sentence_0 | sentence_1 | label |
168
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------|:---------------|
169
+ | <code>Alteração, Lei do Saneamento Básico, isenção, cobrança, utilização, recursos hídricos, Planta de dessalinização, água do mar, água salobra, abastecimento de água.
170
+ <br>_ Política Federal de Saneamento Básico, União, incentivo, dessalinização, água do mar, água salobra, abastecimento de água.
171
+ <br>_Alteração, Lei do Setor Elétrico, desconto, tarifa, energia elétrica, planta de dessalinização, água do mar, água salobra.
172
+ <br></code> | <code>Exclusão, custos, transmissão, energia elétrica, consumidor, municípios, hidrelétrica.</code> | <code>0</code> |
173
+ | <code>Definição, grau de insalubridade, atividade profissional, coleta, lixo, lixeiro, gari, garantia, aposentadoria especial.</code> | <code>Criação, Dia do Gari, comemoração, maio.</code> | <code>0</code> |
174
+ | <code>Alteração, Lei do Setor Elétrico, desconto, tarifa, energia elétrica, consumo de energia, atividade, dessalinização, água salgada.
175
+ <br>
176
+ <br></code> | <code>Isenção, tarifa, energia elétrica, poço artesiano, abastecimento de água, consumo humano, animal, irrigação.</code> | <code>0</code> |
177
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
178
+ ```json
179
+ {
180
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
181
+ "margin": 0.5,
182
+ "size_average": true
183
+ }
184
+ ```
185
+
186
+ ### Training Hyperparameters
187
+ #### Non-Default Hyperparameters
188
+
189
+ - `per_device_train_batch_size`: 2
190
+ - `per_device_eval_batch_size`: 2
191
+ - `num_train_epochs`: 1
192
+ - `multi_dataset_batch_sampler`: round_robin
193
+
194
+ #### All Hyperparameters
195
+ <details><summary>Click to expand</summary>
196
+
197
+ - `overwrite_output_dir`: False
198
+ - `do_predict`: False
199
+ - `prediction_loss_only`: True
200
+ - `per_device_train_batch_size`: 2
201
+ - `per_device_eval_batch_size`: 2
202
+ - `per_gpu_train_batch_size`: None
203
+ - `per_gpu_eval_batch_size`: None
204
+ - `gradient_accumulation_steps`: 1
205
+ - `eval_accumulation_steps`: None
206
+ - `learning_rate`: 5e-05
207
+ - `weight_decay`: 0.0
208
+ - `adam_beta1`: 0.9
209
+ - `adam_beta2`: 0.999
210
+ - `adam_epsilon`: 1e-08
211
+ - `max_grad_norm`: 1
212
+ - `num_train_epochs`: 1
213
+ - `max_steps`: -1
214
+ - `lr_scheduler_type`: linear
215
+ - `lr_scheduler_kwargs`: {}
216
+ - `warmup_ratio`: 0.0
217
+ - `warmup_steps`: 0
218
+ - `log_level`: passive
219
+ - `log_level_replica`: warning
220
+ - `log_on_each_node`: True
221
+ - `logging_nan_inf_filter`: True
222
+ - `save_safetensors`: True
223
+ - `save_on_each_node`: False
224
+ - `save_only_model`: False
225
+ - `no_cuda`: False
226
+ - `use_cpu`: False
227
+ - `use_mps_device`: False
228
+ - `seed`: 42
229
+ - `data_seed`: None
230
+ - `jit_mode_eval`: False
231
+ - `use_ipex`: False
232
+ - `bf16`: False
233
+ - `fp16`: False
234
+ - `fp16_opt_level`: O1
235
+ - `half_precision_backend`: auto
236
+ - `bf16_full_eval`: False
237
+ - `fp16_full_eval`: False
238
+ - `tf32`: None
239
+ - `local_rank`: 0
240
+ - `ddp_backend`: None
241
+ - `tpu_num_cores`: None
242
+ - `tpu_metrics_debug`: False
243
+ - `debug`: []
244
+ - `dataloader_drop_last`: False
245
+ - `dataloader_num_workers`: 0
246
+ - `dataloader_prefetch_factor`: None
247
+ - `past_index`: -1
248
+ - `disable_tqdm`: False
249
+ - `remove_unused_columns`: True
250
+ - `label_names`: None
251
+ - `load_best_model_at_end`: False
252
+ - `ignore_data_skip`: False
253
+ - `fsdp`: []
254
+ - `fsdp_min_num_params`: 0
255
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
256
+ - `fsdp_transformer_layer_cls_to_wrap`: None
257
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
258
+ - `deepspeed`: None
259
+ - `label_smoothing_factor`: 0.0
260
+ - `optim`: adamw_torch
261
+ - `optim_args`: None
262
+ - `adafactor`: False
263
+ - `group_by_length`: False
264
+ - `length_column_name`: length
265
+ - `ddp_find_unused_parameters`: None
266
+ - `ddp_bucket_cap_mb`: None
267
+ - `ddp_broadcast_buffers`: False
268
+ - `dataloader_pin_memory`: True
269
+ - `dataloader_persistent_workers`: False
270
+ - `skip_memory_metrics`: True
271
+ - `use_legacy_prediction_loop`: False
272
+ - `push_to_hub`: False
273
+ - `resume_from_checkpoint`: None
274
+ - `hub_model_id`: None
275
+ - `hub_strategy`: every_save
276
+ - `hub_private_repo`: False
277
+ - `hub_always_push`: False
278
+ - `gradient_checkpointing`: False
279
+ - `gradient_checkpointing_kwargs`: None
280
+ - `include_inputs_for_metrics`: False
281
+ - `fp16_backend`: auto
282
+ - `push_to_hub_model_id`: None
283
+ - `push_to_hub_organization`: None
284
+ - `mp_parameters`:
285
+ - `auto_find_batch_size`: False
286
+ - `full_determinism`: False
287
+ - `torchdynamo`: None
288
+ - `ray_scope`: last
289
+ - `ddp_timeout`: 1800
290
+ - `torch_compile`: False
291
+ - `torch_compile_backend`: None
292
+ - `torch_compile_mode`: None
293
+ - `dispatch_batches`: None
294
+ - `split_batches`: None
295
+ - `include_tokens_per_second`: False
296
+ - `include_num_input_tokens_seen`: False
297
+ - `neftune_noise_alpha`: None
298
+ - `optim_target_modules`: None
299
+ - `batch_sampler`: batch_sampler
300
+ - `multi_dataset_batch_sampler`: round_robin
301
+
302
+ </details>
303
+
304
+ ### Training Logs
305
+ | Epoch | Step | Training Loss |
306
+ |:------:|:----:|:-------------:|
307
+ | 0.0912 | 500 | 0.0328 |
308
+ | 0.1824 | 1000 | 0.0238 |
309
+ | 0.2737 | 1500 | 0.0206 |
310
+ | 0.3649 | 2000 | 0.0182 |
311
+ | 0.4561 | 2500 | 0.0165 |
312
+ | 0.5473 | 3000 | 0.013 |
313
+ | 0.6386 | 3500 | 0.0134 |
314
+ | 0.7298 | 4000 | 0.0112 |
315
+ | 0.8210 | 4500 | 0.0111 |
316
+ | 0.9122 | 5000 | 0.0107 |
317
+
318
+
319
+ ### Framework Versions
320
+ - Python: 3.10.14
321
+ - Sentence Transformers: 3.0.0
322
+ - Transformers: 4.39.3
323
+ - PyTorch: 2.2.0
324
+ - Accelerate: 0.30.1
325
+ - Datasets: 2.14.4
326
+ - Tokenizers: 0.15.1
327
+
328
+ ## Citation
329
+
330
+ ### BibTeX
331
+
332
+ #### Sentence Transformers
333
+ ```bibtex
334
+ @inproceedings{reimers-2019-sentence-bert,
335
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
336
+ author = "Reimers, Nils and Gurevych, Iryna",
337
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
338
+ month = "11",
339
+ year = "2019",
340
+ publisher = "Association for Computational Linguistics",
341
+ url = "https://arxiv.org/abs/1908.10084",
342
+ }
343
+ ```
344
+
345
+ #### ContrastiveLoss
346
+ ```bibtex
347
+ @inproceedings{hadsell2006dimensionality,
348
+ author={Hadsell, R. and Chopra, S. and LeCun, Y.},
349
+ booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
350
+ title={Dimensionality Reduction by Learning an Invariant Mapping},
351
+ year={2006},
352
+ volume={2},
353
+ number={},
354
+ pages={1735-1742},
355
+ doi={10.1109/CVPR.2006.100}
356
+ }
357
+ ```
358
+
359
+ <!--
360
+ ## Glossary
361
+
362
+ *Clearly define terms in order to be accessible across audiences.*
363
+ -->
364
+
365
+ <!--
366
+ ## Model Card Authors
367
+
368
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
369
+ -->
370
+
371
+ <!--
372
+ ## Model Card Contact
373
+
374
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
375
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/models/urf/txtIndexacao_sbert/",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4096,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 24,
19
+ "output_past": true,
20
+ "pad_token_id": 0,
21
+ "pooler_fc_size": 768,
22
+ "pooler_num_attention_heads": 12,
23
+ "pooler_num_fc_layers": 3,
24
+ "pooler_size_per_head": 128,
25
+ "pooler_type": "first_token_transform",
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.42.4",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 29794
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu118"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dddafe4d33b869785ff223426ed956762eda0a441c4fc21130943e33dc75e3d7
3
+ size 1337630536
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff