--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-ucf101-subset results: [] --- # videomae-base-finetuned-ucf101-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7852 - Accuracy: 0.7857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 380 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3762 | 0.1 | 38 | 1.4490 | 0.2857 | | 1.2421 | 1.1 | 76 | 1.3190 | 0.4286 | | 0.8753 | 2.1 | 114 | 0.9506 | 0.5714 | | 0.4285 | 3.1 | 152 | 0.5580 | 0.7857 | | 0.3808 | 4.1 | 190 | 0.4951 | 0.8571 | | 0.1368 | 5.1 | 228 | 0.1578 | 0.9286 | | 0.043 | 6.1 | 266 | 0.0475 | 1.0 | | 0.0842 | 7.1 | 304 | 0.0624 | 1.0 | | 0.003 | 8.1 | 342 | 0.0557 | 1.0 | | 0.0828 | 9.1 | 380 | 0.0446 | 1.0 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.0.1+cu117 - Datasets 3.1.0 - Tokenizers 0.19.1