--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.88 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5534 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0235 | 1.0 | 112 | 1.8164 | 0.52 | | 1.3943 | 2.0 | 225 | 1.2865 | 0.65 | | 0.9238 | 3.0 | 337 | 0.9596 | 0.76 | | 0.7587 | 4.0 | 450 | 0.8548 | 0.79 | | 0.5283 | 5.0 | 562 | 0.7655 | 0.82 | | 0.2717 | 6.0 | 675 | 0.6910 | 0.79 | | 0.2399 | 7.0 | 787 | 0.6660 | 0.83 | | 0.2417 | 8.0 | 900 | 0.5973 | 0.84 | | 0.3339 | 9.0 | 1012 | 0.5669 | 0.84 | | 0.1585 | 9.96 | 1120 | 0.5534 | 0.88 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3